Hasse Diagram:

Pictorial representation of a Poset is called Hasse Diagram.

Example:

If $X=\{2,3,6,12,24,36\}$ and the relation R defined on X by $R=$
$\{\langle a, b\rangle / a / b\}$. Draw the Hasse diagram for (X, R).

Solution:

The relation

$$
R=\left\{\begin{array}{c}
\langle 2,6\rangle\langle 2,12\rangle\langle 2,24\rangle\langle 2,36\rangle\langle 3,6\rangle\langle 3,12\rangle\langle 3,24\rangle\langle 3,36\rangle\langle 6,12\rangle \\
\langle 6,24\rangle\langle 6,36\rangle\langle 12,24\rangle\langle 2,36\rangle
\end{array}\right\}
$$

The Hasse Diagram for (X, R) is

Special Elements of a Poset:

Let (P, \leq) be a Poset. An element $a \in P$ is called least element in P , if $a \leq x$ for all $x \in P$.

An element $b \in P$ is called greatest element in P , if $b \geq x$ for all $x \in P$

Note:

The least element is called " 0 " element and the greatest element is called " 1 " element.

Example:

Consider the following Hasse Diagram

(i)
(ii)

In (i) "a" is the least element and "d" is the greatest element.

In (ii) " g " is the greatest element and there is no least element.

In (iii) " 1 " is the least element and there is no greatest element.

Definition:

Let (P, \leq) be a Poset an A be any non - empty subset of P . An element $a \in P$ is an upper bound of A, if $a \geq x$ for all $x \in A$.

An element $b \in P$ is said to be lower bound in P , if $b \leq x$ for all $x \in A$.

Least Upper Bound: (LUB)

Let (P, \leq) be a Poset and $A \subseteq P$. An element $a \in P$ is said to be least upper bound
(LUB) or supremum (sup) of A, if a is a upper bound of A.
$a \leq c$, where c is any other upper bound of A.

Greatest Lower Bound: (GLB)

Let (P, \leq) be a Poset and $A \subseteq P$. An element $b \in P$ is said to be least upper bound
(GLB) or infimum (inf) of A , if b is a lower bound of A .
$b \geq d$, where d is any other lower bound of A .

Examples:

1. If $X=\{1,2,3,4,6,12\}$ and the relation R defined on X by $R=$ $\{\langle a, b\rangle / a / b\}$. Find LUB and GLB for the $\operatorname{Poset}(X, R)$.

Solution:

The relation

$$
R=\{\langle 1,2\rangle\langle 1,3\rangle\langle 1,4\rangle\langle 1,6\rangle\langle 1,12\rangle\langle 2,4\rangle\langle 2,6\rangle\langle 2,12\rangle\langle 3,6\rangle\langle 3,12\rangle\langle 4,12\rangle\}
$$

The Hasse Diagram for (X, R) is

Table for LUB and GLB

1	$\begin{aligned} & \mathrm{UB}\{1,3\}=\{3,6,12\} \\ & \operatorname{LUB}\{1,3\}=3 \end{aligned}$	1	$\begin{aligned} & \operatorname{LB}\{1,3\}=\{1\} \\ & \operatorname{GLB}\{1,3\}=1 \end{aligned}$
2	$\begin{aligned} & \mathrm{UB}\{1,2,3\}=\{6,12\} \\ & \operatorname{LUB}\{1,2,3\}=6 \end{aligned}$	2	$\begin{aligned} & \operatorname{LB}\{1,2,3\}=\{1\} \\ & \operatorname{GLB}\{1,2,3\}=1 \end{aligned}$
3	$\begin{aligned} & \mathrm{UB}\{2,3\}=\{3,6,12\} \\ & \operatorname{LUB}\{2,3\}=6 \end{aligned}$	3	$\begin{aligned} & \operatorname{LB}\{2,3\}=\{1\} \\ & \operatorname{GLB}\{2,3\}=1 \end{aligned}$
4	$\begin{aligned} & \mathrm{UB}\{2,3,6\}=\{6,12\} \\ & \operatorname{LUB}\{2,3,6\}=6 \end{aligned}$	4	$\begin{aligned} & \operatorname{LB}\{2,3,6\}=\{1\} \\ & \operatorname{GLB}\{2,3,6\}=1 \end{aligned}$
5	$\begin{aligned} & \mathrm{UB}\{4,6\}=\{12\} \\ & \operatorname{LUB}\{4,6\}=12 \end{aligned}$	5	$\begin{aligned} & \operatorname{LB}\{4,6\}=\{1,2\} \\ & \operatorname{GLB}\{4,6\}=2 \end{aligned}$

2. If $X=\{2,3,6,12,24,36\}$ and the relation R defined on X by $R=$ $\{\langle a, b\rangle / a / b\}$. Draw the Hasse diagram for (X, R).

Solution:

The relation

$$
R=\left\{\begin{array}{c}
\langle 2,6\rangle\langle 2,12\rangle\langle 2,24\rangle\langle 2,36\rangle\langle 3,6\rangle\langle 3,12\rangle\langle 3,24\rangle\langle 3,36\rangle\langle 6,12\rangle \\
\langle 6,24\rangle\langle 6,36\rangle\langle 12,24\rangle\langle 2,36\rangle
\end{array}\right\}
$$

The Hasse Diagram for (X, R) is

Table of LUB and GLB

| $\mathbf{1}$ | $\mathrm{UB}\{2,3\}=\{6,12,24,36\}$ | $\mathrm{CB}\{2,3\}=$ does not exists |
| :--- | :--- | :--- | :--- |
| | $\mathrm{LUB}\{2,3\}=6$ | |

