
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3492-DATABASE MANAGEMENT SYSTEMS

Introduction to Statistical Database Security

Statistical databases are used mainly to produce statistics about various populations.

The database may contain confidential data about individuals, which should be protected from

user access. However, users are permitted to retrieve statistical information about the

populations, such as averages, sums, counts, maximums, minimums, and standard deviations.

The techniques that have been developed to protect the privacy of individual information are

beyond the scope of this book. We will illustrate the problem with a very simple example,

which refers to the relation shown in Figure 24.3. This is a PERSON relation with the

attributes Name, Ssn, Income, Address, City, State, Zip, Sex, and Last_degree.

A population is a set of tuples of a relation (table) that satisfy some selection condition.

Hence, each selection condition on the PERSON relation will specify a particular population

of PERSON tuples. For example, the condition Sex = ‘M’ specifies the male population; the

condition ((Sex = ‘F’) AND (Last_degree = ‘M.S.’ OR Last_degree = ‘Ph.D.’)) specifies the

female population that has an M.S. or Ph.D. degree as their highest degree; and the

condition City = ‘Houston’ specifies the population that lives in Houston.

Statistical queries involve applying statistical functions to a population of tuples. For

example, we may want to retrieve the number of individuals in a population or the average

income in the population. However, statistical users are not allowed to retrieve individual data,

such as the income of a specific person. Statistical database security techniques must prohibit

the retrieval of individual data. This can be achieved by prohibiting queries that retrieve

attribute values and by allowing only queries that involve statistical aggregate functions such

as COUNT, SUM, MIN, MAX, AVERAGE, and STANDARD DEVIATION. Such queries

are sometimes called statistical queries.

It is the responsibility of a database management system to ensure the confidentiality

of information about individuals, while still providing useful statistical summaries of data about

those individuals to users. Provision of privacy protection of users in a statistical database is

paramount; its violation is illustrated in the following example.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3492-DATABASE MANAGEMENT SYSTEMS

In some cases it is possible to infer the values of individual tuples from a sequence of

statistical queries. This is particularly true when the conditions result in a population consisting

of a small number of tuples. As an illustration, consider the following statistical queries:

Q1: SELECT COUNT (*) FROM PERSON WHERE <condition>;

Q2: SELECT AVG (Income) FROM PERSON WHERE <condition>;

Now suppose that we are interested in finding the Salary of Jane Smith, and we know

that she has a Ph.D. degree and that she lives in the city of Bellaire, Texas. We issue the

statistical query Q1 with the following condition:

 (Last_degree=‘Ph.D.’ AND Sex=‘F’ AND City=‘Bellaire’ AND State=‘Texas’)

 If we get a result of 1 for this query, we can issue Q2 with the same condition and find

the Salary of Jane Smith. Even if the result of Q1 on the preceding condition is not 1 but is a

small number—say 2 or 3—we can issue statistical queries using the functions MAX, MIN,

and AVERAGE to identify the possible range of values for the Salary of Jane Smith.

The possibility of inferring individual information from statistical queries is reduced if

no statistical queries are permitted whenever the number of tuples in the population specified

by the selection condition falls below some threshold. Another technique for prohibiting

retrieval of individual information is to prohibit sequences of queries that refer repeatedly to

the same population of tuples.

It is also possible to introduce slight inaccuracies or noise into the results of statistical

queries deliberately, to make it difficult to deduce individual information from the results.

Another technique is partitioning of the database. Partitioning implies that records are stored

in groups of some minimum size; queries can refer to any complete group or set of groups, but

never to subsets of records within a group.

The possibility of accessing individual information from statistical queries is reduced

by using the following measures –

Partitioning of Database – This means the records of database must be not be stored as

bulk in single record. It must be divided into groups of some minimum size according to

confidentiality of records. The advantage of Partitioning of database is queries can refer to any

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3492-DATABASE MANAGEMENT SYSTEMS

complete group or set of groups, but queries cannot access the subsets of records within a

group. So, attacker can access at most one or two groups which are less private.

If no statistical queries are permitted whenever number of tuples in population specified

by selection condition falls below some threshold.

Prohibit sequences of queries that refer repeatedly to same population of tuples.

Introduction to Flow Control

Flow control regulates the distribution or flow of information among accessible objects.

A flow between object X and object Y occurs when a program reads values from X and writes

values into Y. Flow controls check that information contained in some objects does not flow

explicitly or implicitly into less protected objects. Thus, a user cannot get indirectly in Y what

he or she cannot get directly in X. Active flow control began in the early 1970s. Most flow

controls employ some concept of security class; the transfer of information from a sender to a

receiver is allowed only if the receiver’s security class is at least as privileged as the sender’s.

Examples of a flow control include preventing a service program from leaking a customer’s

confidential data, and blocking the transmission of secret military data to an unknown classified

user.

A flow policy specifies the channels along which information is allowed to move. The

simplest flow policy specifies just two classes of information—confidential (C) and

nonconfidential (N)—and allows all flows except those from class C to class N. This policy

can solve the confinement problem that arises when a service program handles data such as

customer information, some of which may be confidential. For example, an income-tax

computing service might be allowed to retain a customer’s address and the bill for services

rendered, but not a customer’s income or deductions.

Access control mechanisms are responsible for checking users’ authorizations for

resource access: Only granted operations are executed. Flow controls can be enforced by an

extended access control mechanism, which involves assigning a security class (usually called

the clearance) to each running program. The program is allowed to read a particular memory

segment only if its security class is as high as that of the segment. It is allowed to write in a

segment only if its class is as low as that of the segment. This automatically ensures that no

information transmitted by the person can move from a higher to a lower class. For example, a

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3492-DATABASE MANAGEMENT SYSTEMS

military program with a secret clearance can only read from objects that are unclassified and

confidential and can only write into objects that are secret or top secret.

Two types of flow can be distinguished: explicit flows, occurring as a consequence of

assignment instructions, such as Y:= f(X1,Xn,), and implicit flows generated by conditional

instructions, such as if f(Xm+1, ..., Xn) then Y:= f (X1,Xm).

 Flow control mechanisms must verify that only authorized flows, both explicit and

implicit, are executed. A set of rules must be satisfied to ensure secure information flows. Rules

can be expressed using flow relations among classes and assigned to information, stating the

authorized flows within a system. (An information flow from A to B occurs when information

associated with A affects the value of infor-mation associated with B. The flow results from

operations that cause information transfer from one object to another.) These relations can

define, for a class, the set of classes where information (classified in that class) can flow, or

can state the specific relations to be verified between two classes to allow information to flow

from one to the other. In general, flow control mechanisms implement the controls by assigning

a label to each object and by specifying the security class of the object. Labels are then used to

verify the flow relations defined in the model.

 Covert Channels

 A covert channel allows a transfer of information that violates the security or the policy.

Specifically, a covert channel allows information to pass from a higher classification level to a

lower classification level through improper means. Covert channels can be classified into two

broad categories: timing channels and storage. The distinguishing feature between the two is

that in a timing channel the information is conveyed by the timing of events or processes,

whereas storage channels do not require any temporal synchronization, in that information is

conveyed by accessing system information or what is otherwise inaccessible to the user.

 In a simple example of a covert channel, consider a distributed database system in

which two nodes have user security levels of secret (S) and unclassified (U). In order for a

transaction to commit, both nodes must agree to commit. They mutually can only do operations

that are consistent with the *-property, which states that in any transaction, the S site cannot

write or pass information to the U site. However, if these two sites collude to set up a covert

channel between them, a transaction involving secret data may be committed unconditionally

by the U site, but the S site may do so in some predefined agreed-upon way so that certain

information may be passed from the S site to the U site, violating the *-property. This may be

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3492-DATABASE MANAGEMENT SYSTEMS

achieved where the transaction runs repeatedly, but the actions taken by the S site implicitly

convey information to the U site. Measures such as locking, prevent concurrent writing of the

information by users with different security levels into the same objects, preventing the storage-

type covert channels. Operating systems and distributed databases provide control over the

multiprogramming of operations that allows a sharing of resources without the possibility of

encroachment of one program or process into another’s memory or other resources in the

system, thus preventing timing-oriented covert channels. In general, covert channels are not a

major problem in well-implemented robust data-base implementations. However, certain

schemes may be contrived by clever users that implicitly transfer information.

 Some security experts believe that one way to avoid covert channels is to disallow

programmers to actually gain access to sensitive data that a program will process after the

program has been put into operation. For example, a programmer for a bank has no need to

access the names or balances in depositors’ accounts. Programmers for brokerage firms do not

need to know what buy and sell orders exist for clients. During program testing, access to a

form of real data or some sample test data may be justifiable, but not after the program has

been accepted for regular use.

