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3.4 Lagrange Method

3.4.1 Introduction

Another common approach for deriving the equations of motion of a system is that
of using the so-called Lagrange Method. It originates from the sub-field of physics
known as Analytical Mechanics [1][4], and is closely tied to both the d’ Alembert and
Hamilton principles, as it is one of the analytical methods used to describe the motion
of physical systems. The method is centered around three fundamental concepts:

1. The definition of generalized coordinates q and generalized velocities q, which
may or may not encode the information regarding the constraints applicable to
the system.

2. A scalar function called the Lagrangian function £. For mechanical systems, it
is exactly the difference between the total kinetic energy 7 and the total potential
energy U, of the system at each instant:

L=T-U (3.26)

3. The so-called Euler-Lagrange equation, also known as the Euler-Lagrange of the
second kind, which applies to the Lagrangian function £ and to the total external
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In the most general case, the Lagrangian is a function of the generalized coordinates
and velocities q and q, and it may also have an explicit dependence on time ¢, hence
we redefine the aforementioned scalar energy functions as 7 = 7 (t,q,q) and Y =
U(t,q), thus £ = L(t,q,q).

In the end, one of the most notable properties of this formulation is the capacity to
eliminate all internal reaction forces of the system from the final EoM, in contrast to
the Newton-Euler formulation where there they are explicitly accounted for. To apply
this method to derive EoM of a complex multi-body system there are additional aspects
which must be considered before one can applying the three aforementioned concepts.
These are presented in a concise overview at the end of this section, and are explained
in the immediate continuation.

generalized forces 7:
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3.4.2 Kinetic Energy

The kinetic energy of a system of n;, bodies is defined as:

g ;
T=> Gmmf%ﬂ.ﬂfsi + %sﬂf:’;} . 5Os, ~sﬂsi) (3.28)
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For every body B; in the system, although the linear part may be computed while
expressed in some frame .4, it may be more convenient to compute the rotational kinetic
energy using expressions in another frame B, rotated w.r.t to .4, where the inertia matrix
®5; may have a diagonal form, i.e. the basis vectors of B are principle w.r.t. the
mass distribution. This computation will yield correct results as long as both linear
and angular velocities 4Tg; and g€1s ; express the absolute velocities of the body, i.e
velocities w.r.t. to the inertial frame.

We now need to express the kinetic energy as a function of the generalized quanti-
ties. To achieve this, we make use of the Jacobian matrices described by (2.163) and
(2.164), but computed for each body B, instead of the end-effector. This then allows
us to use the following kinematic relationships:

s, =Js,q (3.29)
ﬂ.’i‘.‘ == JHiq (3.30)

Replacing these relationships into the definition of the kinetic energy in (3.28), results
in the kinetic energy expressed in the generalized coordinates:

T(a.q) = 54" (Z (J5,ms, +J£i@siJm)) q (3.31)
i=1
M?qJ

The underlined quantity M(q) is defined as the generalized mass matrix or generalized
inertia matrix, and as we will see in the continuation, is solely responsible for gener-
ating both the inertial and non-linear centrifugal and Coriolis force terms in the final
EoM.
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