2.2 Randomised Block Design (RBD)

Working Rule:

Set the null hypothesis H_0 : There is no significance difference between the treatments.

Step: 1 Find T =The total value of observations

Step: 2 Find the Correction Factor C . $F = \frac{T^2}{N}$

Step: 3 Calculate the total sum of squares and find the total sum of squares

$$TSS = (\sum X_1^2 + \sum X_2^2 + \sum X_3^2 + \dots) - C.F$$

Step: 4 Find column sum of squares SSC = $\left(\frac{(\sum X_1)^2}{N_1} + \frac{(\sum X_2)^2}{N_2} + \frac{(\sum X_3)^2}{N_3} + \dots\right) - C.F$

Where N_i = Total number of observation in each column (i = 1, 2, 3, ...)

Step: 5 Find Column sum of squares SSR = $\left(\frac{(\sum Y_1)^2}{N_1} + \frac{(\sum Y)^2}{N_2} + \frac{(\sum Y_3)^2}{N_3} + \dots\right) - C.F$

Where N_J = Total number of observation in each ROW (j = 1, 2, 3, ...)

Step: 6 SSE = TSS - (SSC + SSR)

Step: 7 Prepare the ANOVA to calculate F – ratio

Source of variation	Sum of Degrees	Degrees of Freedom	Mean Square	F - Ratio
Between Columns	SSC	C - 1 ERVE OPTIMIZE	$MSC = \frac{ssc}{c-1}$	$F_{c} = \frac{MSC}{MSE}$ if MSC> MSE $F_{c} = \frac{MSE}{MSC}$ if MSE> MSC
Between Rows	SSR	r – 1	$MSR = \frac{SSE}{r-1}$	$F_{c} = \frac{MSR}{MSE}$ if MSR> MSE $F_{c} = \frac{MSE}{MSR}$ if MSE> MSR
Error	SSE	(r-1)(c-1)	$MSE = \frac{SSE}{(r-1)(c-1)}$	

Step: 8 Find the table value (use chi square table)

Step: 9 Conclusion:

Calculated value < Table value, then we accept null hypothesis.

Calculated value > Table value, then we reject null hypothesis.

PROBLEMS ON TWO WAY ANOVA TABLE

1. Three varieties A, B, C of a crop are tested in a randomized block design with four replication. The plot yields in pounds as follows.

A6	C5	A8 = = =	B9
C8	A4	B 6	C9
B7	B6	C10	A6

Analysis the experiment yield and state your conclusion.

Solution:

Set the null hypothesis H_0 : There is no significance difference between the rows and columns.

Varieties	Yields	Yields						
	1	2	3	4	Total			
A	6	4	8	6	24			
В	7	6	6	9	28			
С	8	5	10	9	32			
Total	21	15	24	24	84			

TEST STATISTIC:

Varieties	3	1	2	3	4	Total	X_1^2	X_2^2	X_3^2	X_4^2
		X_1	X_2	X_3	X_4	7E 011	SPREA		J	_
Y_1	A	6	4	8	6	24	36	16	64	36
Y_2	В	7	6	6	9	28	49	36	36	81
Y_3	С	8	5	10	9	32	64	25	100	81
Total		21	15	24	24	84	149	77	200	198

Step:1 Grand Total T = 84

Step: 2 Correction Factor C . $F = \frac{T^2}{N} = \frac{(84)^2}{12} = 588$

Step: 3 Calculate the total sum of squares and find the total sum of squares

$$TSS = (\sum X_1^2 + \sum X_2^2 + \sum X_3^2 + \dots) - C.F$$

$$= (149 + 77 + 200 + 198) - 588$$
$$= 624 - 588 = 36$$

Step: 4 Find column sum of squares SSC=
$$\left(\frac{(\sum X_1)^2}{N_1} + \frac{(\sum X_2)^2}{N_2} + \frac{(\sum X_3)^2}{N_3} + \dots\right) - C.F$$

SSC = $\left(\frac{(21)^2}{3} + \frac{(15)^2}{3} + \frac{(24)^2}{3} + \frac{(24)^2}{3}\right) - 588 = 18$
Step: 5 Find Row sum of squares SSR = $\left(\frac{(\sum Y_1)^2}{N_1} + \frac{(\sum Y)^2}{N_2} + \frac{(\sum Y_3)^2}{N_3} + \dots\right) - C.F$
SSR = $\left(\frac{(24)^2}{4} + \frac{(28)^2}{4} + \frac{(32)^2}{4} + \dots\right) - 588 = 8$

$$= 36 - (18 + 8) 10$$

= TSS - (SSC + SSR)

Step: 7 Prepare the ANOVA to calculate F – ratio

Source of	Sum of	Degrees of	Mean Square	F - Ratio
variation	Degrees	Freedom	TAZII /	F
Between	SSC=18	c-1	$MSC = \frac{SSC}{} =$	$F_c = \frac{MSC}{MSE} = 3.6$
Columns	N. C.	= 4-1=3	6	
Between	SSR=8	r-1	$MSR = \frac{SSR}{r-1} =$	$F_R = \frac{MSR}{MSE} = 2.4$
Rows		=3-1=2	r-1	MSE
Error	SSE = 10	(r-1)(c-1)	MSE =	
		(r-1)(c-1) 2 x 3 = 6	=	
		10	(r-1)(c-1)	
	77/	BJERVE ARTHUR	1.667	100

Step: 8 d.f for (3, 6) at 5% level of significance is 4.76

d.f for (2, 6) at 5% level of significance is 5.14

Step: 9 Conclusion:

Calculated value F_c < Table value, then we accept null hypothesis.

There is no significance difference between the columns.

Calculated value F_R < Table value, then we accept null hypothesis.

There is no significance difference between the rows.

2. Four varieties A, B, C, D of a fertilizer are tested in a randomized block design with four replication. The plot yields in pounds as follows.

A 12	D 20	C 16	B 10
D 18	A 14	B 11	C 14
B 12	C 15	D 19	A 13
C 16	B 11	A 15	D 20

Analysis the experimental yield.

Solution:

Set the null hypothesis H_0 : There is no significance difference between the rows and columns.

Varieties	Yields					
	1	2	3	4	Total	
A	12	14	15	13	54	
В	12	11	11	10	44	
С	16	15	16	14	61	
D	18	20	19	20	77	
Total	58	60	61	57	236 (T)	

TEST STATISTIC:

Varieties	1	1	2	3	4	Total	X_1^2	X_2^2	X_3^2	X_4^2
		X_1	X_2	X_3	X_4			<u> </u>		
Y_1	A	12	14	15	13	54	144	196	225	169
Y_2	В	12	11	114_{T_L}	10	44	144	121	121	100
Y_3	С	16	15	16	14	61	256	225	256	196
Y_4	D	18	20	19	20	77	324	400	361	400
Total		58	60	61	57	236	868	942	963	865

Step:1 Grand Total T = 236

Step: 2 Correction Factor C .
$$F = \frac{T^2}{N} = \frac{(236)^2}{16} = 3481$$

Step: 3 Calculate the total sum of squares and find the total sum of squares

TSS =
$$(\sum X_1^2 + \sum X_2^2 + \sum X_3^2 + \dots) - C.F$$

= $(868 + 942 + 963 + 865) - 3481$
= $3638 - 3481 = 157$

Step: 4 Find column sum of squares SSC=
$$\left(\frac{(\sum X_1)^2}{N_1} + \frac{(\sum X_2)^2}{N_2} + \frac{(\sum X_3)^2}{N_3} + \dots\right) - C.F$$

SSC =
$$\left(\frac{(58)^2}{4} + \frac{(60)^2}{4} + \frac{(61)^2}{4} + \frac{(57)^2}{4}\right) - 3481$$

= $841 + 900 + 930 + 812 - 3481 = 2$

Step: 5 Find Row sum of squares SSR =
$$\left(\frac{(\Sigma Y_1)^2}{N_1} + \frac{(\Sigma Y)^2}{N_2} + \frac{(\Sigma Y_3)^2}{N_3} + \dots\right) - C.F$$

SSR = $\left(\frac{(54)^2}{4} + \frac{(44)^2}{4} + \frac{(61)^2}{4} + \frac{(77)^2}{4}\right) - 3481$
= 729 + 484 + 930.25 + 1482.25 - 3481
= 144.5

Step: 6 SSE = Residual sum of squares

$$= TSS - (SSC + SSR)$$

$$= 157 - (2 + 144.5) = 10.5$$

Step: 7 Prepare the ANOVA to calculate F – ratio

Source of variation	Sum of Degrees	Degrees of Freedom	Mean Square	F - Ratio
Between Columns	SSC=2	c-1 = 4-1=3	$MSC = \frac{ssc}{c-1}$ $= 0.666$	$F_c = \frac{MSE}{MSC} = 1.74$
Between Rows	SSR=144.5	r-1 = 4-1=3	$MSR = \frac{SSR}{r-1} = 48.16$	$F_R = \frac{MSR}{MSE} = 41.51$
Error	SSE = 10.5	(r-1)(c-1) =3 x 3 = 9	$\frac{MSE = \frac{SSE}{(r-1)(c-1)} = 1.6$	

Step: 8 d.f for (9, 3) at 5% level of significance is 8.82

d.f for (3, 9) at 5% level of significance is 3.86

Step: 9 Conclusion:

Calculated value F_c < Table value, then we accept null hypothesis.

There is no significance difference between the columns.

Calculated value F_R >Table value, then we reject null hypothesis.

There is a significance difference between the rows.