
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3501 – COMPILER DESIGN

BACKPATCHING

 A key problem when generating code for boolean expressions and flow-of-control statements is that of

matching a jump instruction with the target of the jump.

 For example, the translation of the boolean expression B in if (B) S contains a jump, for when B is false,

to the instruction following the code for S.

 In a one-pass translation, B must be translated before S is examined. What then is the target of the goto

that jumps over the code for S?

One-Pass Code Generation Using Backpatching

 Backpatching can be used to generate code for boolean expressions and flow-of-control statements in

one pass. Synthesized attributes truelist and falselist of nonterminal B are used to manage labels in

jumping code for boolean expressions.

 In particular, B. truelist will be a list of jump or conditional jump instructions into which we must insert

the label.

 As code is generated for B, jumps to the true and false exits are left incomplete, with the label field

unfilled. These incomplete jumps are placed on lists pointed to by B.truelist and B.falselist, as

appropriate.

 Similarly, a statement S has a synthesized attribute S.nextlist, denoting a list of jumps to the instruction

immediately following the code for S.

1. makelist(i) creates a new list containing only i, an index into the array of instructions; makelist returns

a pointer to the newly created list.

2. merge(pi,p2) concatenates the lists pointed to by p1 and p2, and returns a pointer to the concatenated

list.

3. backpatch(p,i) inserts i as the target label for each of the instructions on the list pointed to by p.

Backpatching for Boolean Expressions

 We now construct a translation scheme suitable for generating code for boolean expressions during

bottom-up parsing.

 A marker nonterminal M in the gram-mar causes a semantic action to pick up, at appropriate times, the

index of the next instruction to be generated. The grammar is as follows:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3501 – COMPILER DESIGN

 Consider semantic action for the production B -> B1 || M B2. If Bx is true, then B is also true, so the

jumps on Bi.truelist become part of B.truelist.

 If Bi is false, however, we must next test B2, so the target for the jumps B>i .falselist must be the

beginning of the code generated for B2.

 This target is obtained using the marker nonterminal M. That nonterminal produces, as a synthesized

attribute M.instr, the index of the next instruction, just before B2 code starts being generated.

 The variable nextinstr holds the index of the next instruction to follow. This value will be backpatched

onto the Bi.falselist (i.e., each instruction on the list B1.falselist will receive M.instr as its target label)

when we have seen the remainder of the production B ->• B1 || M B2.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3501 – COMPILER DESIGN

Flow-of-Control Statements

We now use backpatching to translate flow-of-control statements in one pass. Consider statements generated

by the following grammar:

Here S denotes a statement, L a statement list, A an assignment-statement, and B a boolean expression. Note

that there must be other productions, such as

 The code layout for if-, if-else-, and while-statements is the same as in Section 6.6. We make the tacit

assumption that the code sequence in the instruction array reflects the natural flow from one instruction

to the next.

