
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 CIRCULAR LINKED LIST

 In a circular singly linked list, the last node of the list contains a pointer to the first

node of the list.

 We can have circular singly linked list as well as circular doubly linked list.

 We traverse a circular singly linked list until we reach the same node where we

started.

 The circular singly liked list has no beginning and no ending.

 There is no null value present in the next part of any of the nodes.

 Circular linked list are mostly used in task maintenance in operating systems. Fig.

3.14 shows a circular singly linked list.

Fig. 3.14: Circular Singly Linked List.

 Memory Representation of circular linked list

 Fig 3.15 shows the memory representation of a circular linked list containing

marks of a student in 4 subjects. However, the image shows a glimpse of how the

circular list is being stored in the memory. The start or head of the list is pointing

to the element with the index 1 and containing 13 marks in the data part and 4 in

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

the next part. Which means that it is linked with the node that is being stored at

4th index of the list.

 However, due to the fact that we are considering circular linked list in the memory

therefore the last node of the list contains the address of the first node of the list.

Fig. 3.15: Memory Representation of Circular Linked List

 Operations on Circular Singly linked list

Table 3.2 describes all the operations performed on a Doubly Linked List

Table 3.2: Operations on Doubly Linked List

Sl. No. Operation Description

1.
Insertion at beginning Adding a node into circular singly linked list at

the beginning.

2.
Insertion at end Adding a node into circular singly linked list at

the end.

3.
Deletion at beginning Removing the node from circular singly linked

list at the beginning.

4.

Searching Compare each element of the node with the

given item and return the location at which the

item is present in the list otherwise return null.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

5.
Traversing Visiting each element of the list at least once in

order to perform some specific operation.

 Insertion at the beginning

 There are two scenario in which a node can be inserted in circular singly linked

list at beginning. Either the node will be inserted in an empty list or the node is to

be inserted in an already filled list.

 Firstly, allocate the memory space for the new node by using the malloc method

of C language.

 In the first scenario, the condition head == NULL will be true. Since, the list in

which, we are inserting the node is a circular singly linked list, therefore the

only node of the list (which is just inserted into the list) will point to itself only.

 Also need to make the head pointer point to this node.

 In the second scenario, the condition head == NULL will become false which

means that the list contains at least one node.

 In this case, traverse the list in order to reach the last node of the list.

 At the end of the loop, the pointer temp would point to the last node of the list.

 Make the next pointer of the last node point to the head node of the list and the

new node which is being inserted into the list will be the new head node of the list

 Therefore the next pointer of temp will point to the new node ptr.

Algorithm 3.9

Step 1: IF PTR = NULL

Write OVERFLOW

Go to Step 11

[END OF IF]

Step 2: SET NEW_NODE = PTR

Step 3: SET PTR = PTR -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET TEMP = HEAD

Step 6: Repeat Step 8 while TEMP -> NEXT != HEAD

Step 7: SET TEMP = TEMP -> NEXT

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

[END OF LOOP]

Step 8: SET NEW_NODE -> NEXT =

HEAD Step 9: SET TEMP → NEXT =

NEW_NODE Step 10: SET HEAD =

NEW_NODE

Step 11: EXIT

Fig. 3.16: Insertion into a Circular Linked List at the beginning

 Insertion at the end

 Allocate the memory space for the new node by using the malloc method of C

language.

 In the first scenario, the condition head == NULL will be true.

 Also make the head pointer point to this node.

 In the second scenario, the condition head == NULL will become false which

means that the list contains at least one node.

 In this case, traverse the list in order to reach the last node of the list.

 At the end of the loop, the pointer temp would point to the last node of the list.

 The existing last node i.e. temp must point to the new node ptr

Algorithm 3.10

Step 1: IF PTR = NULL

Write OVERFLOW

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

Go to Step 1

[END OF IF]

Step 2: SET NEW_NODE = PTR

Step 3: SET PTR = PTR -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET NEW_NODE -> NEXT = HEAD

Step 6: SET TEMP = HEAD

Step 7: Repeat Step 8 while TEMP -> NEXT != HEAD

Step 8: SET TEMP = TEMP -> NEXT

[END OF LOOP]

Step 9: SET TEMP -> NEXT = NEW_NODE

Step 10: EXIT

Fig. 3.17: Insertion into a Circular Linked List at the end

 Deletion at the beginning

In order to delete a node in circular singly linked list, we need to make a few

pointer adjustments. There are three scenarios of deleting a node from circular singly

linked list at beginning.

 Scenario 1: (The list is Empty) - If the list is empty then the condition head ==

NULL will become true, in this case, just to print underflow on the screen and

make exit.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Scenario 2: (The list contains single node) - If the list contains single node then,

the condition head → next == head will become true. In this case, delete the entire

list and make the head pointer free.

 Scenario 3: (The list contains more than one node) - If the list contains more than

one node then, in that case, traverse the list by using the pointer ptr to reach the

last node of the list.

 At the end of the loop, the pointer ptr point to the last node of the list.

 The last node of the list will point to the next of the head node.

 Now, free the head pointer by using the free() method.

 Make the node pointed by the next of the last node, the new head of the list.

Algorithm 3.11

Step 1: IF HEAD = NULL

Write UNDERFLOW

Go to Step 8

[END OF IF]

Step 2: SET PTR = HEAD

Step 3: Repeat Step 4 while PTR → NEXT != HEAD

Step 4: SET PTR = PTR → next

[END OF LOOP]

Step 5: SET PTR → NEXT = HEAD → NEXT

Step 6: FREE HEAD

Step 7: SET HEAD = PTR → NEXT

Step 8: EXIT

Fig. 3.18: Deletion in a Circular Linked List at beginning

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Deletion at the end

 Scenario 1 (the list is empty) - If the list is empty then the condition head ==

NULL will become true, in this case, just to print underflow on the screen and

make exit.

 Scenario 2(the list contains single element) - If the list contains single node then,

the condition head → next == head will become true. In this case, delete the entire

list and make the head pointer free.

 Scenario 3(the list contains more than one element) - If the list contains more than

one element, then in order to delete the last element, reach the last node. Also keep

track of the second last node of the list. For this purpose, the two pointers ptr

and preptr are defined.

 Make just one more pointer adjustment. We need to make the next pointer of

preptr point to the next of ptr (i.e. head) and then make pointer ptr free.

Algorithm 3.12

Step 1: IF HEAD = NULL

Write UNDERFLOW

Go to Step 8

[END OF IF]

Step 2: SET PTR = HEAD

Step 3: Repeat Steps 4 and 5 while PTR -> NEXT != HEAD

Step 4: SET PREPTR = PTR

Step 5: SET PTR = PTR -> NEXT

[END OF LOOP]

Step 6: SET PREPTR -> NEXT = HEAD

Step 7: FREE PTR

Step 8: EXIT

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

Fig. 3.19: Deletion in a Circular Linked List at the end

 Searching

 Searching in circular singly linked list needs traversing across the list.

 The item which is to be searched in the list is matched with each node data of the

list once.

 If the match found then the location of that item is returned otherwise -1 is

returned.

Algorithm 3.13

STEP 1: SET PTR = HEAD

STEP 2: Set I = 0

STEP 3: IF PTR = NULL

WRITE "EMPTY LIST"

GOTO STEP 8

END OF IF

STEP 4: IF HEAD → DATA = ITEM

WRITE i+1 RETURN [END OF IF]

STEP 5: REPEAT STEP 5 TO 7 UNTIL PTR->next != head

STEP 6: if ptr → data = item

write i+1

RETURN

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

End of IF

STEP 7: I = I + 1

STEP 8: PTR = PTR → NEXT

[END OF LOOP]

STEP 9: EXIT

 Searching

 Traversing in circular singly linked list can be done through a loop.

 Initialize the temporary pointer variable temp to head pointer and run the

while loop until the next pointer of temp becomes head.

Algorithm 3.14

STEP 1: SET PTR = HEAD

STEP 2: IF PTR = NULL

WRITE "EMPTY LIST"

GOTO STEP 8

END OF IF

STEP 4: REPEAT STEP 5 AND 6 UNTIL PTR → NEXT != HEAD

STEP 5: PRINT PTR → DATA

STEP 6: PTR = PTR → NEXT

[END OF LOOP]

STEP 7: PRINT PTR→ DATA

STEP 8: EXIT

 Advantages of Circular Linked Lists

It is possible to traverse from the last node back to the first i.e. the head node.

 The starting node does not matter as we can traverse each and every node despite

whatever node we keep as the starting node.

 The previous node can be easily identified.

 There is no need for a NULL function to code. The circular list never identifies a

NULL identifier unless it is fully assigned.

 Circular linked lists are beneficial for end operations as start and finish coincide

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Disadvantages of Circular Linked Lists

 If the circular linked list is not handled properly then it can lead to an infinite loop

as it is circular in nature.

 In comparison with singly-linked lists, doubly linked lists are more complex in

nature

 Direct accessing of elements is not possible.

 It is generally a complex task to reverse a circular linked list

	CIRCULAR LINKED LIST
	Operations on Circular Singly linked list
	Insertion at the beginning
	Algorithm 3.9

	Insertion at the end
	Algorithm 3.10

	Deletion at the beginning
	Algorithm 3.11

	Deletion at the end
	Algorithm 3.12

	Searching
	Algorithm 3.13

	Searching (1)
	Algorithm 3.14

	Advantages of Circular Linked Lists
	Disadvantages of Circular Linked Lists

