
CS3551 DISTRIBUTED COMPUTING

 ROHINI COLLEGE OF ENGINEERING TECHNOLOGY

UNIT IV

CONSENSUS AND RECOVERY

Consensus and agreement algorithms: Problem definition – Overview of results – Agreement in

a failure – free system (Synchronous and Asynchronous) – Agreement in synchronous systems

with failures. Check pointing and rollback recovery: Introduction – Background and definitions

– Issues in failure recovery – Checkpoint-based recovery – Coordinated check pointing algorithm

– Algorithm for asynchronous check pointing and recovery.

CONSENSUS PROBLEM IN ASYNCHRONOUS SYSTEMS.

Table: Overview of results on agreement.

f denotes number of failure-prone processes. n is the total number of processes.

Failure

Mode

Synchronous system

(message-passing and

shared memory)

Asynchronous

system

(message-passing and

shared memory)

No

Failure

agreement attainable;

common knowledge

attainable

agreement attainable;

concurrent common

knowledge

Crash

Failure

agreement attainable

f < n processes

agreement not

attainable

Byzantie

Failure

agreement attainable

f ≤ [(n - 1)/3] Byzantine

processes

agreement not

attainable

In a failure-free system, consensus can be attained in a straightforward manner.

Consensus Problem (all processes have an initial value)

Agreement: All non-faulty processes must agree on the same (single) value.

Validity: If all the non-faulty processes have the same initial value, then the agreed upon value

by all the non-faulty processes must be that same value.

Termination: Each non-faulty process must eventually decide on a value.

Consensus Problem in Asynchronous Systems.

The overhead bounds are for the given algorithms, and not necessarily tight bounds for the

problem.

CS3551 DISTRIBUTED COMPUTING

 ROHINI COLLEGE OF ENGINEERING TECHNOLOGY

Solvable

Variants

Failure model

and overhead

Definition

Reliable

broadcast

Crash Failure, n > f

(MP)

Validity,

Agreement,

Integrity conditions

k-set

consensus

Crash Failure, f < k

< n. (MP and SM)

size of the set of

values agreed upon

must be less than k

C-agreement Crash Failure, n ≥

5f + 1 (MP)

values agreed upon

are within ɛ of each

other

Renaming up to f fail-stop

processes, n ≥ 2f +

1 (MP)

Crash Failure, f ≤ n

- 1 (SM)

select a unique name

from a set of names

Circumventing the impossibility results for consensus in asynchronous

systems:

CS3551 DISTRIBUTED COMPUTING

 ROHINI COLLEGE OF ENGINEERING TECHNOLOGY

STEPS FOR BYZANTINE GENERALS (ITERATIVE

FORMULATION), SYNCHRONOUS, MESSAGE-PASSING:

Byzantine Agreement (single source has an initial value) Agreement:

All non faulty processes must agree on the same value.

Validity: If the source process is non-faulty, then the agreed upon value by all the non- faulty

processes must be the same as the initial value of the source.

CS3551 DISTRIBUTED COMPUTING

 ROHINI COLLEGE OF ENGINEERING TECHNOLOGY

STEPS FOR BYZANTINE GENERALS (RECURSIVE FORMULATION),

SYNCHRONOUS, MESSAGE-PASSING:

CS3551 DISTRIBUTED COMPUTING

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 Meenakshi.R

CODE FOR THE PHASE KING ALGORITHM:

Each phase has a unique "phase king" derived, say, from PID. Each phase has two rounds:

• 1 in 1st round, each process sends its estimate to all other processes.

• 2 in 2nd round, the "Phase king" process arrives at an estimate based on the values it

received in 1st round, and broadcasts its new estimate to all others.

Fig. Message pattern for the phase-king algorithm.

CS3551 DISTRIBUTED COMPUTING

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

PHASE KING ALGORITHM CODE:

(f + 1) phases, (f + 1)[(n - 1)(n + 1)] messages, and can tolerate up to f < dn=4e malicious processes

Correctness Argument

• 1 Among f + 1 phases, at least one phase k where phase-king is non-malicious.

• 2 In phase k, all non-malicious processes Pi and Pj will have same estimate of consensus

value as Pk does.

• Pi and Pj use their own majority values. Pi 's mult > n=2 + f)

• Pi uses its majority value; Pj uses phase-king's tie-breaker value. (Pi’s mult > n=2 + f ,

Pj 's mult > n=2 for same value)

• Pi and Pj use the phase-king's tie-breaker value. (In the phase in which Pk is non-

malicious, it sends same value to Pi and Pj)

In all 3 cases, argue that Pi and Pj end up with same value as estimate

• If all non-malicious processes have the value x at the start of a phase, they will continue

to have x as the consensus value at the end of the phase.

CODE FOR THE EPSILON CONSENSUS (MESSAGE-PASSING, ASYNCHRONOUS):

Agreement: All non-faulty processes must make a decision and the values decided upon by any

two non-faulty processes must be within range of each other.

Validity: If a non-faulty process Pi decides on some value vi , then that value must be within the

range of values initially proposed by the processes.

Termination: Each non-faulty process must eventually decide on a value. The algorithm for the

message-passing model assumes n ≥ 5f + 1, although the problem is solvable for n > 3f + 1.

• Main loop simulates sync rounds.

• Main lines (1d)-(1f): processes perform all-all msg exchange

• Process broadcasts its estimate of consensus value, and awaits n - f similar

• msgs from other processes

CS3551 DISTRIBUTED COMPUTING

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

• the processes' estimate of the consensus value converges at a particular rate,

• until it is _ from any other processes estimate.

• # rounds determined by lines (1a)-(1c).

TWO-PROCESS WAIT-FREE CONSENSUS USING FIFO QUEUE, COMPARE &

SWAP:

Wait-free Shared Memory Consensus using Shared Objects:

Not possible to go from bivalent to univalent state if even a single failure is allowed. Difficulty is

not being able to read & write a variable atomically.

• It is not possible to reach consensus in an asynchronous shared memory system using

Read/Write atomic registers, even if a single process can fail by crashing.

• There is no wait-free consensus algorithm for reaching consensus in an asynchronous

CS3551 DISTRIBUTED COMPUTING

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

shared memory system using Read/Write atomic registers.

To overcome these negative results:

• Weakening the consensus problem, e.g., k-set consensus, approximate consensus, and

renaming using atomic registers.

• Using memory that is stronger than atomic Read/Write memory to design wait- free

consensus algorithms. Such a memory would need corresponding access primitives.

Are there objects (with supporting operations), using which there is a wait-free (i.e., (n -1)- crash

resilient) algorithm for reaching consensus in a n-process system? Yes, e.g., Test&Set, Swap,

Compare&Swap. The crash failure model requires the solutions to be wait-free.

TWO-PROCESS WAIT-FREE CONSENSUS USING FIFO QUEUE:

WAIT-FREE CONSENSUS USING COMPARE & SWAP:

CS3551 DISTRIBUTED COMPUTING

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

NONBLOCKING UNIVERSAL ALGORITHM:

Universality of Consensus Objects

An object is defined to be universal if that object along with read/write registers can simulate

any other object in a wait-free manner. In any system containing up to k processes, an object X

such that CN(X) = k is universal.

For any system with up to k processes, the universality of objects X with consensus number k is

shown by giving a universal algorithm to wait-free simulate any object using objects of type X

and read/write registers.

This is shown in two steps.

• 1 A universal algorithm to wait-free simulate any object whatsoever using read/write

registers and arbitrary k-processor consensus objects is given. This is the main step.

• 2 Then, the arbitrary k-process consensus objects are simulated with objects of type X,

having consensus number k. This trivially follows after the first step.

Any object X with consensus number k is universal in a system with n ≤ k processes.

A nonblocking operation, in the context of shared memory operations, is an operation that may

not complete itself but is guaranteed to complete at least one of the pending operations in a

finite number of steps.

Nonblocking Universal Algorithm:

The linked list stores the linearized sequence of operations and states following each operation.

Operations to the arbitrary object Z are simulated in a nonblocking way using an arbitrary

consensus object (the field op.next in each record) which is accessed via the Decide call.

Each process attempts to thread its own operation next into the linked list.

• There are as many universal objects as there are operations to thread.

• A single pointer/counter cannot be used instead of the array Head. Because reading and

updating the pointer cannot be done atomically in a wait-free manner.

• Linearization of the operations given by the sequence number. As algorithm is

nonblock

