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COUNTING DISTINCT ELEMENTS IN A STREAM

Sampling and filtering is tricky to do i.e it needs a reasonable amount of main
memory, so we use a variety of hashing and a randomized algorithm to get approximately
little space needed per stream.

The Count-Distinct Problem

Suppose stream elements are chosen from some universal set. We would like to

know how many different elements have appeared in the stream, counting either from the
beginning of the stream or from some known time in the past.
Example: Consider a Web site gathering statistics on how many unique users it has seen
in each given month. The universal set is the set of logins for that site, and a stream
element is generated each time someone logs in. This measure is appropriate for a site
like Amazon, where the typical user logs in with their unique login name. A similar
problem is a Web site like Google that does not require login to issue a search query, and
may be able to identify users only by the IP address from which they send the query.
There are about 4 billion IP addresses,2 sequences of four 8-bit bytes will serve as the
universal set in this case.

The obvious way to solve the problem is to keep in main memory a list of all the
elements seen so far in the stream. Keep them in an efficient search structure such as a
hash table or search tree, so one can quickly add new elements and check whether or not
the element that just arrived on the stream was already seen. As long as the number of
distinct elements is not too great, this structure can fit in main memory and there is little
problem obtaining an exact answer to the question how many distinct elements appear in
the stream. However, if the number of distinct elements is too great, or if there are too
many streams that need to be processed at once (e.g., Yahoo! wants to count the number
of unique users viewing each of its pages in a month), then we cannot store the needed
data in main memory.

There are several options.

e We could use more machines, each machine handling only one or several of the
streams.
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e We could store most of the data structure in secondary memory and batch stream
elements so whenever we bought a disk block to main memory there would be many
tests and updates to be performed on the data in that block.

e We could use the strategy where we only estimate the number of distinct elements but
use much less memory than the number of distinct elements.

The Flajolet-Martin Algorithm

It is possible to estimate the number of distinct elements by hashing the elements
of the universal set to a bit-string that is sufficiently long. The length of the bit-string
must be sufficient that there are more possible results of the hash function than there are
elements of the universal set. For example, 64 bits is sufficient to hash URLs. We shall
pick many different hash functions and hash each element of the stream using these hash
functions. The important property of a hash function is that when applied to the same
element, it always produces the same result.

The idea behind the Flajolet-Martin Algorithm is that the more different elements
we see in the stream, the more different hash-values we shall see. As we see more
different hash-values, it becomes more likely that one of these values will be “unusual.”
The particular unusual property we shall exploit is that the value ends in many 0’s,
although many other options exist. Whenever we apply a hash function h to a stream
element a, the bit string h(a) will end in some number of 0’s, possibly none. Call this
number the tail length for a and h. Let R be the maximum tail length of the stream. Then
2R is calculated to estimate the number of distinct elements seen in the stream.

This estimate makes intuitive sense. The probability that a given stream element a,
has h(a) ending in at leastr 0’s is 27" .

Suppose there are m distinct elements in the stream. Then the probability that none
of them has tail length at least r is (1 — 2™)™. We can rewrite it as ((1 — 27)* )™*™.
Assuming r is reasonably large, the inner expression is of the form (1 — €)', which is
approximately 1/€.

Thus, the probability of not finding a stream element with as many as r 0’s at the
end of its hash value is e ™.

We can conclude:

1. If m is much larger than 2°, then the probability that we shall find a tail of length at

least r approaches 1.

2. If m is much less than 2', then the probability of finding a tail length at least r

approaches 0.

We conclude from these two points that the proposed estimate of m, which is 2 R
is unlikely to be either much too high or much too low.

Combining Estimates
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Unfortunately, there is a trap regarding the strategy for combining the estimates of
m, the number of distinct elements, that we obtain by using many different hash
functions. Our first assumption would be that if we take the average of the values 2® that
we get from each hash function, we shall get a value that approaches the true m, the more
hash functions we use. However, that is not the case, and the reason has to do with the
influence an overestimate has on the average. Consider a value of r such that 2" is much
larger than m. There is some probability p that we shall discover r to be the largest
number of 0’s at the end of the hash value for any of the m stream elements. Then the
probability of finding r + 1 to be the largest number of 0’s instead is at least p/2.
However, if we do increase by 1 the number of 0’s at the end of a hash value, the value of
2 R doubles.

Consequently, the contribution from each possible large R to the expected value of
2R grows as R grows, and the expected value of 2R is actually infinite. Another way to
combine estimates is to take the median of all estimates. The median is not affected by
the occasional outsized value of 2R, so the worry described above for the average should
not carry over to the median. Unfortunately, the median suffers from another defect: it is
always a power of 2. Thus, no matter how many hash functions we use, should the
correct value of m be between two powers of 2, say 400, then it will be impossible to
obtain a close estimate. There is a solution to the problem, however. We can combine the
two methods. First, group the hash functions into small groups, and take their average.
Then, take the median of the averages. It is true that an occasional outsized 2® will bias
some of the groups and make them too large. However, taking the median of group
averages will reduce the influence of this effect almost to nothing. Moreover, if the
groups themselves are large enough, then the averages can be essentially any number,
which enables us to approach the true value m as long as we use enough hash functions.
In order to guarantee that any possible average can be obtained, groups should be of size
at least a small multiple of log2 m.

Space Requirements

Observe that as we read the stream it is not necessary to store the elements seen.
The only thing we need to keep in main memory is one integer per hash function; this
integer records the largest tail length seen so far for that hash function and any stream
element. If we are processing only one stream, we could use millions of hash functions,
which is far more than we need to get a close estimate. Only if we are trying to process
many streams at the same time would main memory constrain the number of hash
functions we could associate with any one stream. In practice, the time it takes to
compute hash values for each stream element would be the more significant limitation on
the number of hash functions we use.
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ESTIMATING MOMENTS

Consider a generalization of the problem of counting distinct elements in a stream.
The problem, called computing “moments,” involves the distribution of frequencies of
different elements in the stream. We shall define moments of all orders and concentrate
on computing second moments, from which the general algorithm for all moments is a
simple extension.

Definition of Moments

Suppose a stream consists of elements chosen from a universal set. Assume the
universal set is ordered so we can speak of the ith element for any i. Let m; be the number
of occurrences of the ith element for any 1. Then the kth-order moment (or just kth
moment) of the stream is the sum over all i of (m;)*

Example:

The Oth moment 1s the sum of 1 for each m; that is greater than 0.4 That is, the Oth
moment is a count of the number of distinct elements in the stream. The 1st moment is
the sum of the m; ’s, which must be the length of the stream. Thus, first moments are
especially easy to compute; just count the length of the stream seen so far. The second
moment is the sum of the squares of the m; ’s. It is sometimes called the surprise number,
since it measures how uneven the distribution of elements in the stream is. To see the
distinction, suppose we have a stream of length 100, in which eleven different elements
appear. The most even distribution of these eleven elements would have one appearing 10
times and the other ten appearing 9 times each. In this case, the surprise number is 10* +
10 x 9> = 910. At the other extreme, one of the eleven elements could appear 90 times
and the other ten appear 1 time each. Then, the surprise number would be 90 + 10 x 12 =
8110.

There is no problem computing moments of any order if we can afford to keep in
main memory a count for each element that appears in the stream. However, also as in
that section, if we cannot afford to use that much memory, then we need to estimate the
kth moment by keeping a limited number of values in main memory and computing an
estimate from these values. For the case of distinct elements, each of these values were
counts of the longest tail produced by a single hash function. We shall see another form
of value that is useful for second and higher moments.

The Alon-Matias-Szegedy Algorithm for Second Moments

For now, let us assume that a stream has a particular length n. We shall show how
to deal with growing streams in the next section. Suppose we do not have enough space
to count all the mi’s for all the elements of the stream. We can still estimate the second
moment of the stream using a limited amount of space; the more space we use, the more
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accurate the estimate will be. We compute some number of variables. For each variable
X, we store:
1. A particular element of the universal set, which we refer to as X.element, and
2. An integer X.value, which is the value of the variable. To determine the value of a
variable X, we choose a position in the stream between 1 and n, uniformly and at
random. Set X.element to be the element found there, and initialize X.value to 1. As
we read the stream, add 1 to X.value each time we encounter another occurrence of
X.element.
Example: Suppose the stream is a, b, ¢, b, d, a, ¢, d, a, b, d, ¢, a, a, b. The length of the
stream is n = 15. Since a appears 5 times, b appears 4 times, and ¢ and d appear three
times each, the second moment for the stream is 5* + 4% + 32 4+ 3? = 59. Suppose we keep
three variables, X1, X2, and X3. Also, assume that at “random” we pick the 3rd, 8th, and
13th positions to define these three variables. When we reach position 3, we find element
c, so we set Xl.element = ¢ and X1.value = 1. Position 4 holds b, so we do not change
X1. Likewise, nothing happens at positions 5 or 6. At position 7, we see ¢ again, SO we
set X1.value = 2. At position 8 we find d, and so set X2.element = d and X2.value = 1.
Positions 9 and 10 hold a and b, so they do not affect X1 or X2. Position 11 holds d so we
set X2.value = 2, and position 12 holds ¢ so we set X1.value = 3. At position 13, we find
element a, and so set X3.element = a and X3.value = 1. Then, at position 14 we see
another a and so set X3.value = 2. Position 15, with element b does not affect any of the
variables, so we are done, with final values X1.value = 3 and X2.value = X3.value = 2.
We can derive an estimate of the second moment from any variable X. This estimate is
n(2X.value — 1).
Example: Consider the three variables from Example 4.7. From X1 we derive the
estimate n(2X1.value — 1) = 15 x (2 x 3 — 1) = 75. The other two variables, X2 and X3,
each have value 2 at the end, so their estimates are 15 x (2 x 2 — 1) =45. Recall that the
true value of the second moment for this stream is 59. On the other hand, the average of
the three estimates is 55, a fairly close approximation.
Why the Alon-Matias-Szegedy Algorithm Works
We can prove that the expected value of any variable constructed is the second
moment of the stream from which it is constructed. Some notation will make the
argument easier to follow. Let e(i) be the stream element that appears at position i in the
stream, and let c(i) be the number of times element e(i) appears in the stream among
positionsi,i+1,...,n.
Example: Consider the stream of Example. e(6) = a, since the 6th position holds a. Also,
c(6) = 4, since a appears at positions 9, 13, and 14, as well as at position 6. Note that a
also appears at position 1, but that fact does not contribute to c(6).
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The expected value of n(2X.value — 1) is the average over all positions i between 1 and n
of n(2c(i) — 1), that is
E(n(2X.value — l:l:l = %Z n(2c(i) — 1)

i=1

We can simplify the above by canceling factors 1/n and n, to get

E(n(2X.value — 1)) = ¥ _(2¢(i) — 1)
i=1
However, to make sense of the formula, we need to change the order of summation by
grouping all those positions that have the same element. For instance, concentrate on
some element that appears m, times in the stream. The term for the last position in which
a appears must be 2 x 1 — 1 = 1. The term for the next-to-last position in which a appears
is 2 x 2 — 1 = 3. The positions with a before that yield terms 5, 7, and so on, up to 2ma —
1, which is the term for the first position in which a appears. That is, the formula for the
expected value of 2X.value — 1 can be written:
E(n(2X.value — 1)) =3 14345+ -+ (2m, — 1)

Note that 1+ 3+ 5+ - -+ (2ma—1) = (ma)2. The proof is an easy induction on the number
of terms in the sum. Thus, E(n(2X.value — 1)=E,(m,)?, which is the definition of the
second moment.
Higher-Order Moments

We estimate kth moments, for k > 2, in essentially the same way as we estimate
second moments. The only thing that changes is the way we derive an estimate from a
variable. We used the formula n(2v — 1) to turn a value v, the count of the number of
occurrences of some particular stream element a, into an estimate of the second moment.
Notice that 2v — 1 is the difference between v and (v — 1)*. Suppose we wanted the third

moment rather than the second. Then all we have to do is replace 2v—1 by v’—~(v—1)’ =
m

3v*-3v+l. Then Y 3v2-3v+1 =m’, so we can use as our estimate of the third moment
v=1

the formula n(3v? —3v + 1), where v = X.value is the value associated with some variable
X. More generally, we can estimate kth moments for any k > 2 by turning value v =
X.value into n(v* — (v — 1)¥)
Dealing With Infinite Streams

Technically, the estimate we used for second and higher moments assumes that n,
the stream length, is a constant. In practice, n grows with time. That fact, by itself,
doesn’t cause problems, since we store only the values of variables and multiply some
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function of that value by n when it is time to estimate the moment. If we count the
number of stream elements seen and store this value, which only requires log n bits, then
we have n available whenever we need it. A more serious problem is that we must be
careful how we select the positions for the variables. If we do this selection once and for
all, then as the stream gets longer, we are biased in favor of early positions, and the
estimate of the moment will be too large. On the other hand, if we wait too long to pick
positions, then early in the stream we do not have many variables and so will get an
unreliable estimate.

The proper technique is to maintain as many variables as we can store at all times,
and to throw some out as the stream grows. The discarded variables are replaced by new
ones, in such a way that at all times, the probability of picking any one position for a
variable is the same as that of picking any other position. Suppose we have space to store
s variables. Then the first s positions of the stream are each picked as the position of one
of the s variables. Inductively, suppose we have seen n stream elements, and the
probability of any particular position being the position of a variable is uniform, that is
s/n. When the (n+1)st element arrives, pick that position with probability s/(n+1). If not
picked, then the s variables keep their same positions. However, if the (n + 1)st position is
picked, then throw out one of the current s variables, with equal probability. Replace the
one discarded by a new variable whose element is the one at position n + 1 and whose
value is 1.

Surely, the probability that position n + 1 is selected for a variable is what it
should be: s/(n + 1). However, the probability of every other position also is s/(n + 1), as
we can prove by induction on n. By the inductive hypothesis, before the arrival of the (n
+ 1)st stream element, this probability was s/n. With probability 1 —s/(n + 1) the (n + 1)st
position will not be selected, and the probability of each of the first n positions remains
s/n. However, with probability s/(n + 1), the (n + 1)st position is picked, and the
probability for each of the first n positions is reduced by factor (s — 1)/s. Considering the
two cases, the probability of selecting each of the first n positions is

= R 4 g . g B — 1 5
- R

This expression simplifies to

5 s—1

r|+l]|{;:l_{ (=)

—
\ n+1"*n’

and then to
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which in turn simplifies to

COUNTING ONES IN A WINDOW

We now turn our attention to counting problems for streams. Suppose we have a
window of length N on a binary stream. We want at all times to be able to answer queries
of the form “how many 1’s are there in the last k bits?” for any k < N. As in previous
sections, we focus on the situation where we cannot afford to store the entire window.
After showing an approximate algorithm for the binary case, we discuss how this idea
can be extended to summing numbers.
The Cost of Exact Counts
To begin, suppose we want to be able to count exactly the number of 1’s in the last k bits
for any k < N. Then we claim it is necessary to store all N bits of the window, as any
representation that used fewer than N bits could not work. In proof, suppose we have a
representation that uses fewer than N bits to represent the N bits in the window. Since
there are 2N sequences of N bits, but fewer than 2N representations, there must be two
different bit strings w and x that have the same representation. Since w 6= x, they must
differ in at least one bit. Let the last k — 1 bits of w and x agree, but let them differ on the
kth bit from the right end.
Example: If w = 0101 and x = 1010, then k = 1, since scanning from the right, they first
disagree at position 1. I[f w= 1001 and x = 0101, then k = 3, because they first disagree at
the third position from the right. Suppose the data representing the contents of the
window is whatever sequence of bits represents both w and x. Ask the query “how many
1’s are in the last k bits?” The query-answering algorithm will produce the same answer,
whether the window contains w or X, because the algorithm can only see their
representation. But the correct answers are surely different for these two bit-strings. Thus,
we have proved that we must use at least N bits to answer queries about the last k bits for
any k. In fact, we need N bits, even if the only query we can ask is “how many 1’s are in
the entire window of length N?” The argument is similar to that used above. Suppose we
use fewer than N bits to represent the window, and therefore we can find w, x, and k as
above. It might be that w and x have the same number of 1’s, as they did in both cases of
Example 4.10. However, if we follow the current window by any N — k bits, we will have
a situation where the true window contents resulting from w and x are identical except for
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the leftmost bit, and therefore, their counts of 1’s are unequal. However, since the

representations of w and x are the same, the representation of the window must still be

the same if we feed the same bit sequence to these representations. Thus, we can force the

answer to the query “how many 1’s in the window?” to be incorrect for one of the two

possible window contents.

The Datar-Gionis-Indyk-Motwani Algorithm

We shall present the simplest case of an algorithm called DGIM. This version of the

algorithm uses O(log2 N) bits to represent a window of N bits, and allows us to estimate

the number of 1’s in the window with an error of no more than 50%. Later, we shall

discuss an improvement of the method that limits the error to any fraction ¢ > 0, and still

uses only O(log2 N) bits (although with a constant factor that grows as ¢ shrinks). To

begin, each bit of the stream has a timestamp, the position in which it arrives. The first bit

has timestamp 1, the second has timestamp 2, and so on. Since we only need to

distinguish positions within the window of length N, we shall represent timestamps

modulo N, so they can be represented by log2 N bits. If we also store the total number of

bits ever seen in the stream (i.e., the most recent timestamp) modulo N, then we can

determine from a timestamp modulo N where in the current window the bit with that

timestamp is. We divide the window into buckets, consisting of:

1. The timestamp of its right (most recent) end.

2. The number of 1’s in the bucket. This number must be a power of 2, and we refer to
the number of 1’s as the size of the bucket.

To represent a bucket, we need log2 N bits to represent the timestamp (modulo N) of its

right end. To represent the number of 1’s we only need log2 log2 N bits. The reason is

that we know this number i is a power of 2, say 2j, so we can represent i by coding j in

binary. Since j is at most log2 N, it requires log2 log2 N bits. Thus, O(log N) bits suffice

to represent a bucket. There are six rules that must be followed when representing a

stream by buckets.

The right end of a bucket is always a position with a 1.

Every position with a 1 is in some bucket.

No position is in more than one bucket.

There are one or two buckets of any given size, up to some maximum size.

All sizes must be a power of 2.

Buckets cannot decrease in size as we move to the left (back in time).
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Example: Figure 4.2 shows a bit stream divided into buckets in a way that satisfies the
DGIM rules. At the right (most recent) end we see two buckets of size 1. To its left we
see one bucket of size 2. Note that this bucket covers four positions, but only two of them
are 1. Proceeding left, we see two buckets of size 4, and we suggest that a bucket of size
8 exists further left. Notice that it is OK for some 0’s to lie between buckets. Also,
observe from Fig. 4.2 that the buckets do not overlap; there are one or two of each size up
to the largest size, and sizes only increase moving left. In the next sections, we shall
explain the following about the DGIM algorithm:
1. Why the number of buckets representing a window must be small.
2. How to estimate the number of 1’s in the last k bits for any k, with an error no greater
than 50%.

3. How to maintain the DGIM conditions as new bits enter the stream.
Storage Requirements for the DGIM Algorithm

We observed that each bucket can be represented by O(log N) bits. If the window
has length N, then there are no more than N 1’s, surely. Suppose the largest bucket is of
size 2. Then j cannot exceed log’N, or else there are more 1’s in this bucket than there are
1’s in the entire window. Thus, there are at most two buckets of all sizes from log” N
down to 1, and no buckets of larger sizes.
We conclude that there are O(log N) buckets. Since each bucket can be represented in
O(log N) bits, the total space required for all the buckets representing a window of size N
is O(log”N).
Query Answering in the DGIM Algorithm
Suppose we are asked how many 1°’s there are in the last k bits of the window, for some 1
<k < N. Find the bucket b with the earliest timestamp that includes at least some of the k
most recent bits. Estimate the number of 1’s to be the sum of the sizes of all the buckets
to the right (more recent) than bucket b, plus half the size of b itself.
Example : Suppose the stream is that of Figure, and k = 10. Then the query asks for the
number of 1’s in the ten rightmost bits, which happen to be 0110010110. Let the current
timestamp (time of the rightmost bit) be t. Then the two buckets with one 1, having
timestamps t — 1 and t — 2 are completely included in the answer. The bucket of size 2,
with timestamp t — 4, is also completely included. However, the rightmost bucket of size

DS4015 - BIG DATA ANALYTICS



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

4, with timestamp t — 8 is only partly included. We know it is the last bucket to contribute
to the answer, because the next bucket to its left has a timestamp less than t — 9 and thus
is completely out of the window. On the other hand, we know the buckets to its right are
completely inside the range of the query because of the existence of a bucket to their left
with timestamp t — 9 or greater. Our estimate of the number of 1°s in the last ten positions
i1s thus 6. This number is the two buckets of size 1, the bucket of size 2, and half the
bucket of size 4 that is partially within range. Of course the correct answer is 5. Suppose
the above estimate of the answer to a query involves a bucket b of size 2j that is partially
within the range of the query. Let us consider how far from the correct answer c our

estimate could be. There are two cases: the estimate could be larger or smaller than c.

Case 1: The estimate is less than c. In the worst case, all the 1°s of b are actually within

the range of the query, so the estimate misses half bucket b, or 2j—1 1°s. But in this case, ¢

is at least 2j; in fact it is at least 2j+1 — 1, since there is at least one bucket of each of the

sizes 2j—1, 2j)=2, ..., 1. We conclude that our estimate is at least 50% of c.

Case 2: The estimate is greater than c. In the worst case, only the rightmost bit of bucket

b is within range, and there is only one bucket of each of the sizes smaller than b. Then ¢

=1+2j—1+2j-2+ -+ 1=2jand the estimate we give is 2j—1 + 2j—1 + 22+ - - - +

1 =2+ 2j—1 — 1. We see that the estimate is no more than 50% greater than c.

Maintaining the DGIM Conditions

Suppose we have a window of length N properly represented by buckets that satisfy the

DGIM conditions. When a new bit comes in, we may need to modify the buckets, so they

continue to represent the window and continue to satisfy the DGIM conditions.

First, whenever a new bit enters:

e Check the leftmost (earliest) bucket. If its timestamp has now reached the current
timestamp minus N, then this bucket no longer has any of its 1’s in the window.

Therefore, drop it from the list of buckets. Now, we must consider whether the
new bit is 0 or 1. If it is 0, then no further change to the buckets is needed. If the new bit
is a 1, however, we may need to make several changes. First:

e C(reate a new bucket with the current timestamp and size 1.

If there was only one bucket of size 1, then nothing more needs to be done. However, if

there are now three buckets of size 1, that is one too many. We fix this problem by

combining the leftmost (earliest) two buckets of size 1.

e To combine any two adjacent buckets of the same size, replace them by one bucket of
twice the size. The timestamp of the new bucket is the timestamp of the rightmost
(later in time) of the two buckets.

Combining two buckets of size 1 may create a third bucket of size 2. If so, we
combine the leftmost two buckets of size 2 into a bucket of size 4. That, in turn, may
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create a third bucket of size 4, and if so we combine the leftmost two into a bucket of size
8. This process may ripple through the bucket sizes, but there are at most log2 N different
sizes, and the combination of two adjacent buckets of the same size only requires
constant time. As a result, any new bit can be processed in O(log N) time.

Example : Suppose we start with the buckets of Fig. 4.2 and a 1 enters. First, the leftmost
bucket evidently has not fallen out of the window, so we do not drop any buckets. We
create a new bucket of size 1 with the current timestamp, say t. There are now three
buckets of size 1, so we combine the leftmost two. They are replaced with a single bucket
of size 2. Its timestamp is t — 2, the timestamp of the bucket on the right (i.e., the

..101 ::1::-3:-'_:-:'_1:-'_“1:--3: -31::-|%
At least one \/' Two of One of

. i Two of size 4
of s1ze ¥ slze 2 size 1

rightmost bucket that actually appears in Fig. 4.2.

There are now two buckets of size 2, but that is allowed by the DGIM rules. Thus,
the final sequence of buckets after the addition of the 1
Reducing the Error

Instead of allowing either one or two of each size bucket, suppose we allow either
r — 1 or r of each of the exponentially growing sizes 1, 2, 4, . . ., for some integer r > 2. In
order to represent any possible number of 1’s, we must relax this condition for the
buckets of size 1 and buckets of the largest size present; there may be any number, from 1
to 1, of buckets of these sizes. The rule for combining buckets is essentially the same as in
Section 4.6.5. If we get r + 1 buckets of size 2j, combine the leftmost two into a bucket of
size 2j+1. That may, in turn, cause there to be r + 1 buckets of size 2j+1, and if so we
continue combining buckets of larger sizes.

The argument used in Section 4.6.4 can also be used here. However, because there
are more buckets of smaller sizes, we can get a stronger bound on the error. We saw there
that the largest relative error occurs when only one 1 from the leftmost bucket b is within
the query range, and we therefore overestimate the true count. Suppose bucket b is of size
2j. Then the true count is at least 1 + (r—1)(2j—-1+2j2+ - -+ 1)=1+(x—1)(2j—1).
The overestimate is 2j—1 — 1. Thus, the fractional error is
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No matter what j is, this fraction is upper bounded by 1/(r — 1). Thus, by picking r
sufficiently large, we can limit the error to any desired € > 0.
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Extensions to the Counting of Ones

It is natural to ask whether we can extend the technique of this section to handle
aggregations more generally than counting 1’s in a binary stream. An obvious direction to
look is to consider streams of integers and ask if we can estimate the sum of the last k
integers for any 1 <k <N, where N, as usual, is the window size. It is unlikely that we
can use the DGIM approach to streams containing both positive and negative integers.
We could have a stream containing both very large positive integers and very large
negative integers, but with a sum in the window that is very close to 0. Any imprecision
in estimating the values of these large integers would have a huge effect on the estimate
of the sum, and so the fractional error could be unbounded.

For example, suppose we broke the stream into buckets as we have done, but represented
the bucket by the sum of the integers therein, rather than the count of 1’s. If b is the
bucket that is partially within the query range, it could be that b has, in its first half, very
large negative integers and in its second half, equally large positive integers, with a sum
of 0. If we estimate the contribution of b by half its sum, that contribution is essentially 0.
But the actual contribution of that part of bucket b that is in the query range could be
anything from 0 to the sum of all the positive integers. This difference could be far
greater than the actual query answer, and so the estimate would be meaningless.

On the other hand, some other extensions involving integers do work. Suppose
that the stream consists of only positive integers in the range 1 to 2m for some m. We can
treat each of the m bits of each integer as if it were a separate stream. We then use the
DGIM method to count the 1°s in each bit. Suppose the count of the ith bit (assuming bits
count from the low-order end, starting at 0) is ci. Then the sum of the integers is

m—1

i=A)

If we use the technique of Section to estimate each ci with fractional error at most
€, then the estimate of the true sum has error at most €. The worst case occurs when all
the ci’s are overestimated or all are underestimated by the same fraction.
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