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 COUNTING DISTINCT ELEMENTS IN A STREAM 
 Sampling  and  filtering  is  tricky  to  do  i.e  it  needs  a  reasonable  amount  of  main 

 memory,  so  we  use  a  variety  of  hashing  and  a  randomized  algorithm  to  get  approximately 
 little space needed per stream. 
 The Count-Distinct Problem 

 Suppose  stream  elements  are  chosen  from  some  universal  set.  We  would  like  to 
 know  how  many  different  elements  have  appeared  in  the  stream,  counting  either  from  the 
 beginning of the stream or from some known time in the past. 
 Example:  Consider  a  Web  site  gathering  statistics  on  how  many  unique  users  it  has  seen 
 in  each  given  month.  The  universal  set  is  the  set  of  logins  for  that  site,  and  a  stream 
 element  is  generated  each  time  someone  logs  in.  This  measure  is  appropriate  for  a  site 
 like  Amazon,  where  the  typical  user  logs  in  with  their  unique  login  name.  A  similar 
 problem  is  a  Web  site  like  Google  that  does  not  require  login  to  issue  a  search  query,  and 
 may  be  able  to  identify  users  only  by  the  IP  address  from  which  they  send  the  query. 
 There  are  about  4  billion  IP  addresses,2  sequences  of  four  8-bit  bytes  will  serve  as  the 
 universal set in this case. 

 The  obvious  way  to  solve  the  problem  is  to  keep  in  main  memory  a  list  of  all  the 
 elements  seen  so  far  in  the  stream.  Keep  them  in  an  efficient  search  structure  such  as  a 
 hash  table  or  search  tree,  so  one  can  quickly  add  new  elements  and  check  whether  or  not 
 the  element  that  just  arrived  on  the  stream  was  already  seen.  As  long  as  the  number  of 
 distinct  elements  is  not  too  great,  this  structure  can  fit  in  main  memory  and  there  is  little 
 problem  obtaining  an  exact  answer  to  the  question  how  many  distinct  elements  appear  in 
 the  stream.  However,  if  the  number  of  distinct  elements  is  too  great,  or  if  there  are  too 
 many  streams  that  need  to  be  processed  at  once  (e.g.,  Yahoo!  wants  to  count  the  number 
 of  unique  users  viewing  each  of  its  pages  in  a  month),  then  we  cannot  store  the  needed 
 data in main memory. 

 There are several options. 
 ●  We  could  use  more  machines,  each  machine  handling  only  one  or  several  of  the 

 streams. 
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 ●  We  could  store  most  of  the  data  structure  in  secondary  memory  and  batch  stream 
 elements  so  whenever  we  bought  a  disk  block  to  main  memory  there  would  be  many 
 tests and updates to be performed on the data in that block. 

 ●  We  could  use  the  strategy  where  we  only  estimate  the  number  of  distinct  elements  but 
 use much less memory than the number of distinct elements. 

 The Flajolet-Martin Algorithm 
 It  is  possible  to  estimate  the  number  of  distinct  elements  by  hashing  the  elements 

 of  the  universal  set  to  a  bit-string  that  is  sufficiently  long.  The  length  of  the  bit-string 
 must  be  sufficient  that  there  are  more  possible  results  of  the  hash  function  than  there  are 
 elements  of  the  universal  set.  For  example,  64  bits  is  sufficient  to  hash  URLs.  We  shall 
 pick  many  different  hash  functions  and  hash  each  element  of  the  stream  using  these  hash 
 functions.  The  important  property  of  a  hash  function  is  that  when  applied  to  the  same 
 element, it always produces the same result. 

 The  idea  behind  the  Flajolet-Martin  Algorithm  is  that  the  more  different  elements 
 we  see  in  the  stream,  the  more  different  hash-values  we  shall  see.  As  we  see  more 
 different  hash-values,  it  becomes  more  likely  that  one  of  these  values  will  be  “unusual.” 
 The  particular  unusual  property  we  shall  exploit  is  that  the  value  ends  in  many  0’s, 
 although  many  other  options  exist.  Whenever  we  apply  a  hash  function  h  to  a  stream 
 element  a,  the  bit  string  h(a)  will  end  in  some  number  of  0’s,  possibly  none.  Call  this 
 number  the  tail  length  for  a  and  h.  Let  R  be  the  maximum  tail  length  of  the  stream.  Then 
 2  R  is calculated to estimate the number of distinct  elements seen in the stream. 

 This  estimate  makes  intuitive  sense.  The  probability  that  a  given  stream  element  a, 
 has h(a) ending in at least r 0’s is  2  −r  . 

 Suppose  there  are  m  distinct  elements  in  the  stream.  Then  the  probability  that  none 
 of  them  has  tail  length  at  least  r  is  (1  −  2  −r  )  m  .  We  can  rewrite  it  as  ((1  −  2  −r  )  2r  )  m2−r  . 
 Assuming  r  is  reasonably  large,  the  inner  expression  is  of  the  form  (1  −  є)  1/є  ,  which  is 
 approximately  1/є  . 

 Thus,  the  probability  of  not  finding  a  stream  element  with  as  many  as  r  0’s  at  the 
 end of its hash value is e  −m2−r  . 

 We can conclude: 
 1.  If  m  is  much  larger  than  2  r  ,  then  the  probability  that  we  shall  find  a  tail  of  length  at 
 least r approaches 1. 
 2.  If  m  is  much  less  than  2  r  ,  then  the  probability  of  finding  a  tail  length  at  least  r 
 approaches 0. 

 We  conclude  from  these  two  points  that  the  proposed  estimate  of  m,  which  is  2  R 
 is unlikely to be either much too high or much too low. 
 Combining Estimates 
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 Unfortunately,  there  is  a  trap  regarding  the  strategy  for  combining  the  estimates  of 
 m,  the  number  of  distinct  elements,  that  we  obtain  by  using  many  different  hash 
 functions.  Our  first  assumption  would  be  that  if  we  take  the  average  of  the  values  2  R  that 
 we  get  from  each  hash  function,  we  shall  get  a  value  that  approaches  the  true  m,  the  more 
 hash  functions  we  use.  However,  that  is  not  the  case,  and  the  reason  has  to  do  with  the 
 influence  an  overestimate  has  on  the  average.  Consider  a  value  of  r  such  that  2  r  is  much 
 larger  than  m.  There  is  some  probability  p  that  we  shall  discover  r  to  be  the  largest 
 number  of  0’s  at  the  end  of  the  hash  value  for  any  of  the  m  stream  elements.  Then  the 
 probability  of  finding  r  +  1  to  be  the  largest  number  of  0’s  instead  is  at  least  p/2. 
 However, if we do increase by 1 the number of 0’s at the end of a hash value, the value of 
 2 R doubles. 

 Consequently,  the  contribution  from  each  possible  large  R  to  the  expected  value  of 
 2R  grows  as  R  grows,  and  the  expected  value  of  2R  is  actually  infinite.  Another  way  to 
 combine  estimates  is  to  take  the  median  of  all  estimates.  The  median  is  not  affected  by 
 the  occasional  outsized  value  of  2R,  so  the  worry  described  above  for  the  average  should 
 not  carry  over  to  the  median.  Unfortunately,  the  median  suffers  from  another  defect:  it  is 
 always  a  power  of  2.  Thus,  no  matter  how  many  hash  functions  we  use,  should  the 
 correct  value  of  m  be  between  two  powers  of  2,  say  400,  then  it  will  be  impossible  to 
 obtain  a  close  estimate.  There  is  a  solution  to  the  problem,  however.  We  can  combine  the 
 two  methods.  First,  group  the  hash  functions  into  small  groups,  and  take  their  average. 
 Then,  take  the  median  of  the  averages.  It  is  true  that  an  occasional  outsized  2  R  will  bias 
 some  of  the  groups  and  make  them  too  large.  However,  taking  the  median  of  group 
 averages  will  reduce  the  influence  of  this  effect  almost  to  nothing.  Moreover,  if  the 
 groups  themselves  are  large  enough,  then  the  averages  can  be  essentially  any  number, 
 which  enables  us  to  approach  the  true  value  m  as  long  as  we  use  enough  hash  functions. 
 In  order  to  guarantee  that  any  possible  average  can  be  obtained,  groups  should  be  of  size 
 at least a small multiple of log2 m. 
 Space Requirements 

 Observe  that  as  we  read  the  stream  it  is  not  necessary  to  store  the  elements  seen. 
 The  only  thing  we  need  to  keep  in  main  memory  is  one  integer  per  hash  function;  this 
 integer  records  the  largest  tail  length  seen  so  far  for  that  hash  function  and  any  stream 
 element.  If  we  are  processing  only  one  stream,  we  could  use  millions  of  hash  functions, 
 which  is  far  more  than  we  need  to  get  a  close  estimate.  Only  if  we  are  trying  to  process 
 many  streams  at  the  same  time  would  main  memory  constrain  the  number  of  hash 
 functions  we  could  associate  with  any  one  stream.  In  practice,  the  time  it  takes  to 
 compute  hash  values  for  each  stream  element  would  be  the  more  significant  limitation  on 
 the number of hash functions we use. 
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 ESTIMATING MOMENTS 
 Consider  a  generalization  of  the  problem  of  counting  distinct  elements  in  a  stream. 

 The  problem,  called  computing  “moments,”  involves  the  distribution  of  frequencies  of 
 different  elements  in  the  stream.  We  shall  define  moments  of  all  orders  and  concentrate 
 on  computing  second  moments,  from  which  the  general  algorithm  for  all  moments  is  a 
 simple extension. 
 Definition of Moments 

 Suppose  a  stream  consists  of  elements  chosen  from  a  universal  set.  Assume  the 
 universal  set  is  ordered  so  we  can  speak  of  the  ith  element  for  any  i.  Let  m  i  be  the  number 
 of  occurrences  of  the  ith  element  for  any  i.  Then  the  kth-order  moment  (or  just  kth 
 moment) of the stream is the sum over all i of (m  i  )  k 

 Example: 
 The  0th  moment  is  the  sum  of  1  for  each  m  i  that  is  greater  than  0.4  That  is,  the  0th 

 moment  is  a  count  of  the  number  of  distinct  elements  in  the  stream.  The  1st  moment  is 
 the  sum  of  the  m  i  ’s,  which  must  be  the  length  of  the  stream.  Thus,  first  moments  are 
 especially  easy  to  compute;  just  count  the  length  of  the  stream  seen  so  far.  The  second 
 moment  is  the  sum  of  the  squares  of  the  m  i  ’s.  It  is  sometimes  called  the  surprise  number, 
 since  it  measures  how  uneven  the  distribution  of  elements  in  the  stream  is.  To  see  the 
 distinction,  suppose  we  have  a  stream  of  length  100,  in  which  eleven  different  elements 
 appear.  The  most  even  distribution  of  these  eleven  elements  would  have  one  appearing  10 
 times  and  the  other  ten  appearing  9  times  each.  In  this  case,  the  surprise  number  is  10  2  + 
 10  ×  9  2  =  910.  At  the  other  extreme,  one  of  the  eleven  elements  could  appear  90  times 
 and  the  other  ten  appear  1  time  each.  Then,  the  surprise  number  would  be  90  2  +  10  ×  1  2  = 
 8110. 

 There  is  no  problem  computing  moments  of  any  order  if  we  can  afford  to  keep  in 
 main  memory  a  count  for  each  element  that  appears  in  the  stream.  However,  also  as  in 
 that  section,  if  we  cannot  afford  to  use  that  much  memory,  then  we  need  to  estimate  the 
 kth  moment  by  keeping  a  limited  number  of  values  in  main  memory  and  computing  an 
 estimate  from  these  values.  For  the  case  of  distinct  elements,  each  of  these  values  were 
 counts  of  the  longest  tail  produced  by  a  single  hash  function.  We  shall  see  another  form 
 of value that is useful for second and higher moments. 
 The Alon-Matias-Szegedy Algorithm for Second Moments 

 For  now,  let  us  assume  that  a  stream  has  a  particular  length  n.  We  shall  show  how 
 to  deal  with  growing  streams  in  the  next  section.  Suppose  we  do  not  have  enough  space 
 to  count  all  the  mi’s  for  all  the  elements  of  the  stream.  We  can  still  estimate  the  second 
 moment  of  the  stream  using  a  limited  amount  of  space;  the  more  space  we  use,  the  more 
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 accurate  the  estimate  will  be.  We  compute  some  number  of  variables.  For  each  variable 
 X, we store: 
 1.  A particular element of the universal set, which we refer to as X.element, and 
 2.  An  integer  X.value,  which  is  the  value  of  the  variable.  To  determine  the  value  of  a 

 variable  X,  we  choose  a  position  in  the  stream  between  1  and  n,  uniformly  and  at 
 random.  Set  X.element  to  be  the  element  found  there,  and  initialize  X.value  to  1.  As 
 we  read  the  stream,  add  1  to  X.value  each  time  we  encounter  another  occurrence  of 
 X.element. 

 Example:  Suppose  the  stream  is  a,  b,  c,  b,  d,  a,  c,  d,  a,  b,  d,  c,  a,  a,  b.  The  length  of  the 
 stream  is  n  =  15.  Since  a  appears  5  times,  b  appears  4  times,  and  c  and  d  appear  three 
 times  each,  the  second  moment  for  the  stream  is  5  2  +  4  2  +  3  2  +  3  2  =  59.  Suppose  we  keep 
 three  variables,  X1,  X2,  and  X3.  Also,  assume  that  at  “random”  we  pick  the  3rd,  8th,  and 
 13th  positions  to  define  these  three  variables.  When  we  reach  position  3,  we  find  element 
 c,  so  we  set  X1.element  =  c  and  X1.value  =  1.  Position  4  holds  b,  so  we  do  not  change 
 X1.  Likewise,  nothing  happens  at  positions  5  or  6.  At  position  7,  we  see  c  again,  so  we 
 set  X1.value  =  2.  At  position  8  we  find  d,  and  so  set  X2.element  =  d  and  X2.value  =  1. 
 Positions  9  and  10  hold  a  and  b,  so  they  do  not  affect  X1  or  X2.  Position  11  holds  d  so  we 
 set  X2.value  =  2,  and  position  12  holds  c  so  we  set  X1.value  =  3.  At  position  13,  we  find 
 element  a,  and  so  set  X3.element  =  a  and  X3.value  =  1.  Then,  at  position  14  we  see 
 another  a  and  so  set  X3.value  =  2.  Position  15,  with  element  b  does  not  affect  any  of  the 
 variables,  so  we  are  done,  with  final  values  X1.value  =  3  and  X2.value  =  X3.value  =  2. 
 We  can  derive  an  estimate  of  the  second  moment  from  any  variable  X.  This  estimate  is 
 n(2X.value − 1). 
 Example:  Consider  the  three  variables  from  Example  4.7.  From  X1  we  derive  the 
 estimate  n(2X1.value  −  1)  =  15  ×  (2  ×  3  −  1)  =  75.  The  other  two  variables,  X2  and  X3, 
 each  have  value  2  at  the  end,  so  their  estimates  are  15  ×  (2  ×  2  −  1)  =  45.  Recall  that  the 
 true  value  of  the  second  moment  for  this  stream  is  59.  On  the  other  hand,  the  average  of 
 the three estimates is 55, a fairly close approximation. 
 Why the Alon-Matias-Szegedy Algorithm Works 

 We  can  prove  that  the  expected  value  of  any  variable  constructed  is  the  second 
 moment  of  the  stream  from  which  it  is  constructed.  Some  notation  will  make  the 
 argument  easier  to  follow.  Let  e(i)  be  the  stream  element  that  appears  at  position  i  in  the 
 stream,  and  let  c(i)  be  the  number  of  times  element  e(i)  appears  in  the  stream  among 
 positions i, i + 1, . . . , n. 
 Example:  Consider  the  stream  of  Example.  e(6)  =  a,  since  the  6th  position  holds  a.  Also, 
 c(6)  =  4,  since  a  appears  at  positions  9,  13,  and  14,  as  well  as  at  position  6.  Note  that  a 
 also appears at position 1, but that fact does not contribute to c(6). 

 DS4015 - BIG DATA ANALYTICS 



 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 The  expected  value  of  n(2X.value  −  1)  is  the  average  over  all  positions  i  between  1  and  n 
 of n(2c(i) − 1), that is 

 We can simplify the above by canceling factors 1/n and n, to get 

 However,  to  make  sense  of  the  formula,  we  need  to  change  the  order  of  summation  by 
 grouping  all  those  positions  that  have  the  same  element.  For  instance,  concentrate  on 
 some  element  that  appears  m  a  times  in  the  stream.  The  term  for  the  last  position  in  which 
 a  appears  must  be  2  ×  1  −  1  =  1.  The  term  for  the  next-to-last  position  in  which  a  appears 
 is  2  ×  2  −  1  =  3.  The  positions  with  a  before  that  yield  terms  5,  7,  and  so  on,  up  to  2ma  − 
 1,  which  is  the  term  for  the  first  position  in  which  a  appears.  That  is,  the  formula  for  the 
 expected value of 2X.value − 1 can be written: 

 Note  that  1+  3+  5+·  ·  ·+  (2ma−1)  =  (ma)2.  The  proof  is  an  easy  induction  on  the  number 
 of  terms  in  the  sum.  Thus,  E(n(2X.value  −  1)=E  a  (m  a  )  2  ,  which  is  the  definition  of  the 
 second moment. 
 Higher-Order Moments 

 We  estimate  kth  moments,  for  k  >  2,  in  essentially  the  same  way  as  we  estimate 
 second  moments.  The  only  thing  that  changes  is  the  way  we  derive  an  estimate  from  a 
 variable.  We  used  the  formula  n(2v  −  1)  to  turn  a  value  v,  the  count  of  the  number  of 
 occurrences  of  some  particular  stream  element  a,  into  an  estimate  of  the  second  moment. 
 Notice  that  2v  −  1  is  the  difference  between  v  2  and  (v  −  1)  2  .  Suppose  we  wanted  the  third 
 moment  rather  than  the  second.  Then  all  we  have  to  do  is  replace  2v−1  by  v  3  −(v−1)  3  = 

 3v  2  −3v+1.  Then  3v2−3v+1  =  m  3  ,  so  we  can  use  as  our  estimate  of  the  third  moment 
 𝑣 = 1 

 𝑚 

∑

 the  formula  n(3v  2  −3v  +  1),  where  v  =  X.value  is  the  value  associated  with  some  variable 
 X.  More  generally,  we  can  estimate  kth  moments  for  any  k  ≥  2  by  turning  value  v  = 
 X.value into n(v  k  − (v − 1)  k  ) 
 Dealing With Infinite Streams 

 Technically,  the  estimate  we  used  for  second  and  higher  moments  assumes  that  n, 
 the  stream  length,  is  a  constant.  In  practice,  n  grows  with  time.  That  fact,  by  itself, 
 doesn’t  cause  problems,  since  we  store  only  the  values  of  variables  and  multiply  some 
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 function  of  that  value  by  n  when  it  is  time  to  estimate  the  moment.  If  we  count  the 
 number  of  stream  elements  seen  and  store  this  value,  which  only  requires  log  n  bits,  then 
 we  have  n  available  whenever  we  need  it.  A  more  serious  problem  is  that  we  must  be 
 careful  how  we  select  the  positions  for  the  variables.  If  we  do  this  selection  once  and  for 
 all,  then  as  the  stream  gets  longer,  we  are  biased  in  favor  of  early  positions,  and  the 
 estimate  of  the  moment  will  be  too  large.  On  the  other  hand,  if  we  wait  too  long  to  pick 
 positions,  then  early  in  the  stream  we  do  not  have  many  variables  and  so  will  get  an 
 unreliable estimate. 

 The  proper  technique  is  to  maintain  as  many  variables  as  we  can  store  at  all  times, 
 and  to  throw  some  out  as  the  stream  grows.  The  discarded  variables  are  replaced  by  new 
 ones,  in  such  a  way  that  at  all  times,  the  probability  of  picking  any  one  position  for  a 
 variable  is  the  same  as  that  of  picking  any  other  position.  Suppose  we  have  space  to  store 
 s  variables.  Then  the  first  s  positions  of  the  stream  are  each  picked  as  the  position  of  one 
 of  the  s  variables.  Inductively,  suppose  we  have  seen  n  stream  elements,  and  the 
 probability  of  any  particular  position  being  the  position  of  a  variable  is  uniform,  that  is 
 s/n.  When  the  (n+1)st  element  arrives,  pick  that  position  with  probability  s/(n+1).  If  not 
 picked,  then  the  s  variables  keep  their  same  positions.  However,  if  the  (n  +  1)st  position  is 
 picked,  then  throw  out  one  of  the  current  s  variables,  with  equal  probability.  Replace  the 
 one  discarded  by  a  new  variable  whose  element  is  the  one  at  position  n  +  1  and  whose 
 value is 1. 

 Surely,  the  probability  that  position  n  +  1  is  selected  for  a  variable  is  what  it 
 should  be:  s/(n  +  1).  However,  the  probability  of  every  other  position  also  is  s/(n  +  1),  as 
 we  can  prove  by  induction  on  n.  By  the  inductive  hypothesis,  before  the  arrival  of  the  (n 
 +  1)st  stream  element,  this  probability  was  s/n.  With  probability  1  −  s/(n  +  1)  the  (n  +  1)st 
 position  will  not  be  selected,  and  the  probability  of  each  of  the  first  n  positions  remains 
 s/n.  However,  with  probability  s/(n  +  1),  the  (n  +  1)st  position  is  picked,  and  the 
 probability  for  each  of  the  first  n  positions  is  reduced  by  factor  (s  −  1)/s.  Considering  the 
 two cases, the probability of selecting each of the first n positions is 

 This expression simplifies to 

 and then to 
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 which in turn simplifies to 

 COUNTING ONES IN A WINDOW 
 We  now  turn  our  attention  to  counting  problems  for  streams.  Suppose  we  have  a 

 window  of  length  N  on  a  binary  stream.  We  want  at  all  times  to  be  able  to  answer  queries 
 of  the  form  “how  many  1’s  are  there  in  the  last  k  bits?”  for  any  k  ≤  N.  As  in  previous 
 sections,  we  focus  on  the  situation  where  we  cannot  afford  to  store  the  entire  window. 
 After  showing  an  approximate  algorithm  for  the  binary  case,  we  discuss  how  this  idea 
 can be extended to summing numbers. 
 The Cost of Exact Counts 
 To  begin,  suppose  we  want  to  be  able  to  count  exactly  the  number  of  1’s  in  the  last  k  bits 
 for  any  k  ≤  N.  Then  we  claim  it  is  necessary  to  store  all  N  bits  of  the  window,  as  any 
 representation  that  used  fewer  than  N  bits  could  not  work.  In  proof,  suppose  we  have  a 
 representation  that  uses  fewer  than  N  bits  to  represent  the  N  bits  in  the  window.  Since 
 there  are  2N  sequences  of  N  bits,  but  fewer  than  2N  representations,  there  must  be  two 
 different  bit  strings  w  and  x  that  have  the  same  representation.  Since  w  6=  x,  they  must 
 differ  in  at  least  one  bit.  Let  the  last  k  −  1  bits  of  w  and  x  agree,  but  let  them  differ  on  the 
 kth bit from the right end. 
 Example:  If  w  =  0101  and  x  =  1010,  then  k  =  1,  since  scanning  from  the  right,  they  first 
 disagree  at  position  1.  If  w  =  1001  and  x  =  0101,  then  k  =  3,  because  they  first  disagree  at 
 the  third  position  from  the  right.  Suppose  the  data  representing  the  contents  of  the 
 window  is  whatever  sequence  of  bits  represents  both  w  and  x.  Ask  the  query  “how  many 
 1’s  are  in  the  last  k  bits?”  The  query-answering  algorithm  will  produce  the  same  answer, 
 whether  the  window  contains  w  or  x,  because  the  algorithm  can  only  see  their 
 representation.  But  the  correct  answers  are  surely  different  for  these  two  bit-strings.  Thus, 
 we  have  proved  that  we  must  use  at  least  N  bits  to  answer  queries  about  the  last  k  bits  for 
 any  k.  In  fact,  we  need  N  bits,  even  if  the  only  query  we  can  ask  is  “how  many  1’s  are  in 
 the  entire  window  of  length  N?”  The  argument  is  similar  to  that  used  above.  Suppose  we 
 use  fewer  than  N  bits  to  represent  the  window,  and  therefore  we  can  find  w,  x,  and  k  as 
 above.  It  might  be  that  w  and  x  have  the  same  number  of  1’s,  as  they  did  in  both  cases  of 
 Example  4.10.  However,  if  we  follow  the  current  window  by  any  N  −  k  bits,  we  will  have 
 a situation where the true window contents resulting from w and x are identical except for 
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 the  leftmost  bit,  and  therefore,  their  counts  of  1’s  are  unequal.  However,  since  the 
 representations  of  w  and  x  are  the  same,  the  representation  of  the  window  must  still  be 
 the  same  if  we  feed  the  same  bit  sequence  to  these  representations.  Thus,  we  can  force  the 
 answer  to  the  query  “how  many  1’s  in  the  window?”  to  be  incorrect  for  one  of  the  two 
 possible window contents. 
 The Datar-Gionis-Indyk-Motwani Algorithm 
 We  shall  present  the  simplest  case  of  an  algorithm  called  DGIM.  This  version  of  the 
 algorithm  uses  O(log2  N)  bits  to  represent  a  window  of  N  bits,  and  allows  us  to  estimate 
 the  number  of  1’s  in  the  window  with  an  error  of  no  more  than  50%.  Later,  we  shall 
 discuss  an  improvement  of  the  method  that  limits  the  error  to  any  fraction  ǫ  >  0,  and  still 
 uses  only  O(log2  N)  bits  (although  with  a  constant  factor  that  grows  as  ǫ  shrinks).  To 
 begin,  each  bit  of  the  stream  has  a  timestamp,  the  position  in  which  it  arrives.  The  first  bit 
 has  timestamp  1,  the  second  has  timestamp  2,  and  so  on.  Since  we  only  need  to 
 distinguish  positions  within  the  window  of  length  N,  we  shall  represent  timestamps 
 modulo  N,  so  they  can  be  represented  by  log2  N  bits.  If  we  also  store  the  total  number  of 
 bits  ever  seen  in  the  stream  (i.e.,  the  most  recent  timestamp)  modulo  N,  then  we  can 
 determine  from  a  timestamp  modulo  N  where  in  the  current  window  the  bit  with  that 
 timestamp is. We divide the window into buckets, consisting of: 
 1.  The timestamp of its right (most recent) end. 
 2.  The  number  of  1’s  in  the  bucket.  This  number  must  be  a  power  of  2,  and  we  refer  to 

 the number of 1’s as the size of the bucket. 
 To  represent  a  bucket,  we  need  log2  N  bits  to  represent  the  timestamp  (modulo  N)  of  its 
 right  end.  To  represent  the  number  of  1’s  we  only  need  log2  log2  N  bits.  The  reason  is 
 that  we  know  this  number  i  is  a  power  of  2,  say  2j,  so  we  can  represent  i  by  coding  j  in 
 binary.  Since  j  is  at  most  log2  N,  it  requires  log2  log2  N  bits.  Thus,  O(log  N)  bits  suffice 
 to  represent  a  bucket.  There  are  six  rules  that  must  be  followed  when  representing  a 
 stream by buckets. 
 ●  The right end of a bucket is always a position with a 1. 
 ●  Every position with a 1 is in some bucket. 
 ●  No position is in more than one bucket. 
 ●  There are one or two buckets of any given size, up to some maximum size. 
 ●  All sizes must be a power of 2. 
 ●  Buckets cannot decrease in size as we move to the left (back in time). 
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 Example:  Figure  4.2  shows  a  bit  stream  divided  into  buckets  in  a  way  that  satisfies  the 
 DGIM  rules.  At  the  right  (most  recent)  end  we  see  two  buckets  of  size  1.  To  its  left  we 
 see  one  bucket  of  size  2.  Note  that  this  bucket  covers  four  positions,  but  only  two  of  them 
 are  1.  Proceeding  left,  we  see  two  buckets  of  size  4,  and  we  suggest  that  a  bucket  of  size 
 8  exists  further  left.  Notice  that  it  is  OK  for  some  0’s  to  lie  between  buckets.  Also, 
 observe  from  Fig.  4.2  that  the  buckets  do  not  overlap;  there  are  one  or  two  of  each  size  up 
 to  the  largest  size,  and  sizes  only  increase  moving  left.  In  the  next  sections,  we  shall 
 explain the following about the DGIM algorithm: 
 1.  Why the number of buckets representing a window must be small. 
 2.  How  to  estimate  the  number  of  1’s  in  the  last  k  bits  for  any  k,  with  an  error  no  greater 

 than 50%. 
 3.  How to maintain the DGIM conditions as new bits enter the stream. 
 Storage Requirements for the DGIM Algorithm 

 We  observed  that  each  bucket  can  be  represented  by  O(log  N)  bits.  If  the  window 
 has  length  N,  then  there  are  no  more  than  N  1’s,  surely.  Suppose  the  largest  bucket  is  of 
 size  2  j  .  Then  j  cannot  exceed  log  2  N,  or  else  there  are  more  1’s  in  this  bucket  than  there  are 
 1’s  in  the  entire  window.  Thus,  there  are  at  most  two  buckets  of  all  sizes  from  log  2  N 
 down to 1, and no buckets of larger sizes. 
 We  conclude  that  there  are  O(log  N)  buckets.  Since  each  bucket  can  be  represented  in 
 O(log  N)  bits,  the  total  space  required  for  all  the  buckets  representing  a  window  of  size  N 
 is O(log  2  N). 
 Query Answering in the DGIM Algorithm 
 Suppose  we  are  asked  how  many  1’s  there  are  in  the  last  k  bits  of  the  window,  for  some  1 
 ≤  k  ≤  N.  Find  the  bucket  b  with  the  earliest  timestamp  that  includes  at  least  some  of  the  k 
 most  recent  bits.  Estimate  the  number  of  1’s  to  be  the  sum  of  the  sizes  of  all  the  buckets 
 to the right (more recent) than bucket b, plus half the size of b itself. 
 Example  :  Suppose  the  stream  is  that  of  Figure,  and  k  =  10.  Then  the  query  asks  for  the 
 number  of  1’s  in  the  ten  rightmost  bits,  which  happen  to  be  0110010110.  Let  the  current 
 timestamp  (time  of  the  rightmost  bit)  be  t.  Then  the  two  buckets  with  one  1,  having 
 timestamps  t  −  1  and  t  −  2  are  completely  included  in  the  answer.  The  bucket  of  size  2, 
 with  timestamp  t  −  4,  is  also  completely  included.  However,  the  rightmost  bucket  of  size 
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 4,  with  timestamp  t  −  8  is  only  partly  included.  We  know  it  is  the  last  bucket  to  contribute 
 to  the  answer,  because  the  next  bucket  to  its  left  has  a  timestamp  less  than  t  −  9  and  thus 
 is  completely  out  of  the  window.  On  the  other  hand,  we  know  the  buckets  to  its  right  are 
 completely  inside  the  range  of  the  query  because  of  the  existence  of  a  bucket  to  their  left 
 with  timestamp  t  −  9  or  greater.  Our  estimate  of  the  number  of  1’s  in  the  last  ten  positions 
 is  thus  6.  This  number  is  the  two  buckets  of  size  1,  the  bucket  of  size  2,  and  half  the 
 bucket  of  size  4  that  is  partially  within  range.  Of  course  the  correct  answer  is  5.  Suppose 
 the  above  estimate  of  the  answer  to  a  query  involves  a  bucket  b  of  size  2j  that  is  partially 
 within  the  range  of  the  query.  Let  us  consider  how  far  from  the  correct  answer  c  our 
 estimate could be. There are two cases: the estimate could be larger or smaller than c. 
 Case  1:  The  estimate  is  less  than  c.  In  the  worst  case,  all  the  1’s  of  b  are  actually  within 
 the  range  of  the  query,  so  the  estimate  misses  half  bucket  b,  or  2j−1  1’s.  But  in  this  case,  c 
 is  at  least  2j;  in  fact  it  is  at  least  2j+1  −  1,  since  there  is  at  least  one  bucket  of  each  of  the 
 sizes 2j−1, 2j−2, . . . , 1. We conclude that our estimate is at least 50% of c. 
 Case  2:  The  estimate  is  greater  than  c.  In  the  worst  case,  only  the  rightmost  bit  of  bucket 
 b  is  within  range,  and  there  is  only  one  bucket  of  each  of  the  sizes  smaller  than  b.  Then  c 
 =  1  +  2j−1  +  2j−2  +  ·  ·  ·  +  1  =  2j  and  the  estimate  we  give  is  2j−1  +  2j−1  +  2j−2  +  ·  ·  ·  + 
 1 = 2j + 2j−1 − 1. We see that the estimate is no more than 50% greater than c. 
 Maintaining the DGIM Conditions 
 Suppose  we  have  a  window  of  length  N  properly  represented  by  buckets  that  satisfy  the 
 DGIM  conditions.  When  a  new  bit  comes  in,  we  may  need  to  modify  the  buckets,  so  they 
 continue to represent the window and continue to satisfy the DGIM conditions. 
 First, whenever a new bit enters: 
 ●  Check  the  leftmost  (earliest)  bucket.  If  its  timestamp  has  now  reached  the  current 

 timestamp minus N, then this bucket no longer has any of its 1’s in the window. 
 Therefore,  drop  it  from  the  list  of  buckets.  Now,  we  must  consider  whether  the 

 new  bit  is  0  or  1.  If  it  is  0,  then  no  further  change  to  the  buckets  is  needed.  If  the  new  bit 
 is a 1, however, we may need to make several changes. First: 
 ●  Create a new bucket with the current timestamp and size 1. 
 If  there  was  only  one  bucket  of  size  1,  then  nothing  more  needs  to  be  done.  However,  if 
 there  are  now  three  buckets  of  size  1,  that  is  one  too  many.  We  fix  this  problem  by 
 combining the leftmost (earliest) two buckets of size 1. 
 ●  To  combine  any  two  adjacent  buckets  of  the  same  size,  replace  them  by  one  bucket  of 

 twice  the  size.  The  timestamp  of  the  new  bucket  is  the  timestamp  of  the  rightmost 
 (later in time) of the two buckets. 

 Combining  two  buckets  of  size  1  may  create  a  third  bucket  of  size  2.  If  so,  we 
 combine  the  leftmost  two  buckets  of  size  2  into  a  bucket  of  size  4.  That,  in  turn,  may 
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 create  a  third  bucket  of  size  4,  and  if  so  we  combine  the  leftmost  two  into  a  bucket  of  size 
 8.  This  process  may  ripple  through  the  bucket  sizes,  but  there  are  at  most  log2  N  different 
 sizes,  and  the  combination  of  two  adjacent  buckets  of  the  same  size  only  requires 
 constant time. As a result, any new bit can be processed in O(log N) time. 
 Example  :  Suppose  we  start  with  the  buckets  of  Fig.  4.2  and  a  1  enters.  First,  the  leftmost 
 bucket  evidently  has  not  fallen  out  of  the  window,  so  we  do  not  drop  any  buckets.  We 
 create  a  new  bucket  of  size  1  with  the  current  timestamp,  say  t.  There  are  now  three 
 buckets  of  size  1,  so  we  combine  the  leftmost  two.  They  are  replaced  with  a  single  bucket 
 of  size  2.  Its  timestamp  is  t  −  2,  the  timestamp  of  the  bucket  on  the  right  (i.e.,  the 
 rightmost bucket that actually appears in Fig. 4.2. 

 There are now two buckets of size 2, but that is allowed by the DGIM rules. Thus, 
 the final sequence of buckets after the addition of the 1 
 Reducing the Error 

 Instead  of  allowing  either  one  or  two  of  each  size  bucket,  suppose  we  allow  either 
 r  −  1  or  r  of  each  of  the  exponentially  growing  sizes  1,  2,  4,  .  .  .,  for  some  integer  r  >  2.  In 
 order  to  represent  any  possible  number  of  1’s,  we  must  relax  this  condition  for  the 
 buckets  of  size  1  and  buckets  of  the  largest  size  present;  there  may  be  any  number,  from  1 
 to  r,  of  buckets  of  these  sizes.  The  rule  for  combining  buckets  is  essentially  the  same  as  in 
 Section  4.6.5.  If  we  get  r  +  1  buckets  of  size  2j,  combine  the  leftmost  two  into  a  bucket  of 
 size  2j+1.  That  may,  in  turn,  cause  there  to  be  r  +  1  buckets  of  size  2j+1,  and  if  so  we 
 continue combining buckets of larger sizes. 

 The  argument  used  in  Section  4.6.4  can  also  be  used  here.  However,  because  there 
 are  more  buckets  of  smaller  sizes,  we  can  get  a  stronger  bound  on  the  error.  We  saw  there 
 that  the  largest  relative  error  occurs  when  only  one  1  from  the  leftmost  bucket  b  is  within 
 the  query  range,  and  we  therefore  overestimate  the  true  count.  Suppose  bucket  b  is  of  size 
 2j.  Then  the  true  count  is  at  least  1  +  (r  −  1)(2j−1  +  2j−2  +  ·  ·  ·  +  1)  =  1  +  (r  −  1)(2j  −  1). 
 The overestimate is 2j−1 − 1. Thus, the fractional error is 

 No  matter  what  j  is,  this  fraction  is  upper  bounded  by  1/(r  −  1).  Thus,  by  picking  r 
 sufficiently large, we can limit the error to any desired є > 0. 
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 Extensions to the Counting of Ones 
 It  is  natural  to  ask  whether  we  can  extend  the  technique  of  this  section  to  handle 
 aggregations  more  generally  than  counting  1’s  in  a  binary  stream.  An  obvious  direction  to 
 look  is  to  consider  streams  of  integers  and  ask  if  we  can  estimate  the  sum  of  the  last  k 
 integers  for  any  1  ≤  k  ≤  N,  where  N,  as  usual,  is  the  window  size.  It  is  unlikely  that  we 
 can  use  the  DGIM  approach  to  streams  containing  both  positive  and  negative  integers. 
 We  could  have  a  stream  containing  both  very  large  positive  integers  and  very  large 
 negative  integers,  but  with  a  sum  in  the  window  that  is  very  close  to  0.  Any  imprecision 
 in  estimating  the  values  of  these  large  integers  would  have  a  huge  effect  on  the  estimate 
 of the sum, and so the fractional error could be unbounded. 
 For  example,  suppose  we  broke  the  stream  into  buckets  as  we  have  done,  but  represented 
 the  bucket  by  the  sum  of  the  integers  therein,  rather  than  the  count  of  1’s.  If  b  is  the 
 bucket  that  is  partially  within  the  query  range,  it  could  be  that  b  has,  in  its  first  half,  very 
 large  negative  integers  and  in  its  second  half,  equally  large  positive  integers,  with  a  sum 
 of  0.  If  we  estimate  the  contribution  of  b  by  half  its  sum,  that  contribution  is  essentially  0. 
 But  the  actual  contribution  of  that  part  of  bucket  b  that  is  in  the  query  range  could  be 
 anything  from  0  to  the  sum  of  all  the  positive  integers.  This  difference  could  be  far 
 greater than the actual query answer, and so the estimate would be meaningless. 

 On  the  other  hand,  some  other  extensions  involving  integers  do  work.  Suppose 
 that  the  stream  consists  of  only  positive  integers  in  the  range  1  to  2m  for  some  m.  We  can 
 treat  each  of  the  m  bits  of  each  integer  as  if  it  were  a  separate  stream.  We  then  use  the 
 DGIM  method  to  count  the  1’s  in  each  bit.  Suppose  the  count  of  the  ith  bit  (assuming  bits 
 count from the low-order end, starting at 0) is ci. Then the sum of the integers is 

 If  we  use  the  technique  of  Section  to  estimate  each  ci  with  fractional  error  at  most 
 є,  then  the  estimate  of  the  true  sum  has  error  at  most  є.  The  worst  case  occurs  when  all 
 the ci’s are overestimated or all are underestimated by the same fraction. 
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