CLASSIFICATION BY DECISION TREE INDUCTION

Decision tree

- A flow-chart-like tree structure
- Internal node denotes a test on an attribute
- Branch represents an outcome of the test
- Leaf nodes represent class labels or class distribution
- Decision tree generation consists of two phases
 - Tree construction
 - At start, all the training examples are at the root
 - Partition examples recursively based on selected attributes
 - Tree pruning
- Identify and remove branches that reflect noise or outliers
- Use of decision tree: Classifying an unknown sample
- Test the attribute values of the sample against the decision tree

Training Dataset

This follows an example from Quinlan's ID3

Algorithm for decision tree induction

- Basic algorithm (a greedy algorithm)
- Tree is constructed in a top-down recursive divide-and-conquer manner
- At start, all the training examples are at the root
- Attributes are categorical (if continuous-valued, they are discretized in advance)
- Examples are partitioned recursively based on selected attributes

- Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)

• Conditions for stopping partitioning

– All samples for a given node belong to the same class

 There are no remaining attributes for further partitioning – majority voting is employed for classifying the leaf

– There are no samples left

Extracting Classification Rules from Trees

- Represent the knowledge in the form of IF-THEN rules
- One rule is created for each path from the root to a leaf

Each attribute-value pair along a path forms a conjunction

• The leaf node holds the class prediction

• Rules are easier for humans to understand

Example

IF age = "<=30" AND student = "no" THEN buys_computer = "no" IF age = "<=30" AND student = "yes" THEN buys_computer = "yes" IF age = "31...40" THEN buys_computer = "yes" IF age = ">40" AND credit_rating = "excellent" THEN buys_computer = "yes" IF age = ">40" AND credit_rating = "fair" THEN buys_computer = "no" Avoid Overfitting in Classification

The generated tree may overfit the training data

- Too many branches, some may reflect anomalies due to noise or outliers

- Result is in poor accuracy for unseen samples
- Two approaches to avoid over fitting

Prepruning:

Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold

□ Difficult to choose an appropriate threshold

Post pruning:

□ Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees

 \Box Use a set of data different from the training data to decide which the "best pruned tree"

RULE BASED CLASSIFICATION

Rule-Based Classification -1R

- Rules are a good way of representing information or bits of knowledge.
- A rule-based classifier uses a set of IF-THEN rules for classification.
- An IF-THEN rule is an expression of the form IF condition THEN conclusion.

An example

R1: IF age = youth AND student = yes THEN buys computer = yes

- The "IF" part (or left side) of a rule is known as the rule antecedent or precondition.
- The "THEN" part (or right side) is the rule consequent.
- In the rule antecedent, the condition consists of one or more attribute tests (e.g., age = youth and student = yes) that are logically ANDed.
- The rule's consequent contains a class prediction (in this case, we are predicting whether a customer will buy a computer).

Application of Rule-Based Classifier

- A rule *r* covers an instance **x** if the attributes of the instance satisfy the condition (LHS) of the rule
 - **R1**: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds
 - **R2**: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes
 - **R3**: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals
 - R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles
 - R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
hawk	warm	no	yes	no	?
grizzly bear	warm	yes	no	no	?

The rule **R1** covers a hawk \Rightarrow Class = *Bird*

The rule R3 covers the grizzly bear \Rightarrow Class = Mammal

Rule Coverage and Accuracy

- Quality of a classification rule can be evaluated by
 - Coverage: fraction of records that satisfy the antecedent of a rule

 $Coverage(r) = \frac{|LHS|}{n}$

 Accuracy: fraction of records covered by the rule that belong to the class on the RHS

 $Accuracy(r) = \frac{|LHS \cap RHS|}{|LHS|}$

(n is the number of records in our sample)

Tid	Refund	Marital Status	Taxable	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

(Status = Single) \rightarrow No Coverage = 40%, Accuracy = 50%

How does Rule-based Classifier Work?

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals