
AD3351 | DESIGN AND ANALYSIS OF ALGORITHMS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

FUNDAMENTALS OF ALGORITHMIC PROBLEM SOLVING

A sequence of steps involved in designing and analyzing an algorithm is shown in the figure below.

FIGURE 1.2.1 Algorithm design and analysis process.

(i) Understanding the Problem

 This is the first step in designing of algorithm.

 Read the problem’s description carefully to understand the problem statement

completely.

 Ask questions for clarifying the doubts about the problem.

 Identify the problem types and use existing algorithm to find solution.

 Input (instance) to the problem and range of the input get fixed.

(ii) Decision making

The Decision making is done on the following:

a) Ascertaining the Capabilities of the Computational Device

In random-access machine (RAM), instructions are executed one after another (The

central assumption is that one operation at a time). Accordingly,

AD3351 | DESIGN AND ANALYSIS OF ALGORITHMS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

algorithms designed to be executed on such machines are called sequential algorithms.

In some newer computers, operations are executed concurrently, i.e., in parallel. Algorithms

that take advantage of this capability are called parallel algorithms.

Choice of computational devices like Processor and memory is mainly based on

space and time efficiency

a) Choosing between Exact and Approximate Problem Solving:

The next principal decision is to choose between solving the problem exactly or solving it

approximately.

An algorithm used to solve the problem exactly and produce correct result is called an exact

algorithm.

If the problem is so complex and not able to get exact solution, then we have to choose an algorithm

called an approximation algorithm. i.e., produces an

Approximate answer. E.g., extracting square roots, solving nonlinear equations, and evaluating

definite integrals.

a) Algorithm Design Techniques

• An algorithm design technique (or “strategy” or “paradigm”) is a general approach to

solving problems algorithmically that is applicable to a variety of problems from different

areas of computing.

• Though Algorithms and Data Structures are independent, but they are combined together

to develop program. Hence the choice of proper data structure is required before designing

the algorithm.

• Implementation of algorithm is possible only with the help of Algorithms and Data

Structures

• Algorithmic strategy / technique / paradigm are a general approach by which many

problems can be solved algorithmically. E.g., Brute Force, Divide and Conquer, Dynamic

Programming, Greedy Technique and soon.

(iii) Methods of Specifying an Algorithm

Algorithms+ Data Structures =Programs

AD3351 | DESIGN AND ANALYSIS OF ALGORITHMS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

There are three ways to specify an algorithm. They are:

a. Natural language

b. Pseudocode

c. Flowchart

FIGURE 1.2.2 Algorithm Specifications

Pseudocode and flowchart are the two options that are most widely used nowadays for specifying

algorithms.

a. Natural Language

It is very simple and easy to specify an algorithm using natural language. But many times

specification of algorithm by using natural language is not clear and thereby we get brief

specification.

Example: An algorithm to perform addition of two numbers.

Such a specification creates difficulty while actually implementing it. Hence many programmers

prefer to have specification of algorithm by means of Pseudocode.

b) Pseudocode:

 Pseudocode is a mixture of a natural language and programming language constructs.

Pseudocode is usually more precise than natural language.

 For Assignment operation left arrow “←”, for comments two slashes “//”,if

condition, for, while loops are used.

Step 1: Read the first number, say a.

Step 2: Read the first number, say b.

Step 3: Add the above two numbers and store the result in c.

Step 4: Display the result from c.

Flowchart Pseudocode Natural Language

AD3351 | DESIGN AND ANALYSIS OF ALGORITHMS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

This specification is more useful for implementation of any language.

c) Flowchart

• In the earlier days of computing, the dominant method for specifying algorithms was a

flowchart, this representation technique has proved to be inconvenient.

• Flowchart is a graphical representation of an algorithm. It is a method of expressing an

algorithm by a collection of connected geometric shapes containing descriptions of the

algorithm’s steps.

ALGORITHM Sum(a,b)

//Problem Description: This algorithm performs addition of two numbers

//Input: Two integers a and b

//Output: Addition of two integers

c←a+b

returnc

AD3351 | DESIGN AND ANALYSIS OF ALGORITHMS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

FIGURE 1.2.3 Flowchart symbols and Example for two integer addition.

(iv) Proving an Algorithm’s Correctness

 Once an algorithm has been specified then its correctness must be proved.

 An algorithm must yield a required result for every legitimate input in a finite amount

of time.

 For Example, the correctness of Euclid’s algorithm for computing the greatest

common divisor stems from the correctness of the equality gcd(m, n) = gcd(n, m mod

n).

 A common technique for proving correctness is to use mathematical induction because

an algorithm’s iterations provide a natural sequence of steps needed for such proofs.

 The notion of correctness for approximation algorithms is less straightforward than it is

for exact algorithms. The error produced by the algorithm should not exceed a

predefined limit.

(v) Analyzing an Algorithm

 For an algorithm the most important is efficiency. In fact, there are two kinds of

algorithm efficiency.

They are:

 Time efficiency, indicating how fast the algorithm runs, and

 Space efficiency, indicating how much extra memory it uses.

 The efficiency of an algorithm is determined by measuring both time efficiency

and space efficiency.

 So factors to analyze an algorithm are:

 Time efficiency of an algorithm

 Space efficiency of an algorithm

 Simplicity of an algorithm

 Generality of an algorithm

AD3351 | DESIGN AND ANALYSIS OF ALGORITHMS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

(vi) Coding an Algorithm

 The coding / implementation of an algorithm is done by a suitable

programming language like C, C++,JAVA.

 The transition from an algorithm to a program can be done either incorrectly or very

inefficiently. Implementing an algorithm correctly is necessary. The Algorithm power

should not reduce by in efficient implementation.

 Standard tricks like computing a loop’s invariant (an expression that does not change

its value) outside the loop, collecting common subexpressions, replacing expensive

operations by cheap ones, selection of programming language and so on should be

known to the programmer.

 Typically, such improvements can speed up a program only by a constant factor, whereas

a better algorithm can make a difference in running time by orders of magnitude. But

once an algorithm is selected, a 10–50% speedup may be worth an effort.

 It is very essential to write an optimized code (efficient code) to reduce the burden of

compiler.

