BA4101 - STATISTICS FOR MANAGEMENT

UNIT I - Introduction to Probability

Random Experiment:

An experiment whose output is uncertain even though all the outcomes are known.

Example: Tossing a coin, Throwing a fair die, Birth of a baby.

Sample Space:

The set of all possible outcomes in a random experiment. It is denoted by S .

Example:

For tossing a fair coin, $S=\{H, T\}$

For throwing a fair die, $S=\{1,2,3,4,5,6$,

For birth of a baby, $S=\{M, F\}$

Event:

A subset of sample space is event. It is denoted by A .

Mutually Exclusive Events:

Two events A and B are said to be mutually exclusive events if they do not occur simultaneously. If A and B are mutually exclusive, then $A \cap B=\Phi$

Example:

Tossing two unbiased coins

$$
S=\{H H, H T, T H, T T\}
$$

(i) Let $A=\{H H\}, B=\{H T\}$

$$
A \cap B=\{H\} \neq \Phi
$$

Then A and B are not mutually exclusive.
(i) Let $A=\{H H\}, B=\{T T\}$

$$
A \cap B=\Phi
$$

Then A and B are mutually exclusive.

1.1 Probability:

Probability of an event A is $P(A)=\frac{n(A)}{n(S)}$
i.e. , $P(A)=\frac{\text { number of cases favourable to } A}{\text { Total number of cases }}$

Axioms of Probability:

(i) $0 \leq P(A) \leq 1$
(ii) $P(S)=1$
(iii) $P(A \cup B)=P(A)+P(B)$, if A and B are mutually exclusive.

Note:
(i) $P(\phi)=0$
(ii) $P(\overline{A)}=1-P(A)$, for any event A
(iii) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$, for any two events A and B.

Independent events:

Two events A and B are said to be independent if occurrence of A does not affect the occurrence of B.

Condition for two events and B are independent:

$$
P(A \cap B)=P(A) P(B)
$$

Conditional Probability:

If the probability of the event A provided the event B has already occurred is called the conditional probability and is defined as

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \text { provided } P(B) \neq 0
$$

The probability of an event B provided A has occurred already is given by

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}, \text { provided } P(A) \neq 0
$$

RANDOM VARIABLE

Define Random Variables:

A random variable is a function that assign a real number for all the outcomes in the sample space of a random experiment.

Example:

Toss two coins then the sample space $S=\{H H, H T, T H, T T\}$

Now we define a random variable X to denote the number of heads in 2 tosses.
$\mathrm{X}(\mathrm{HH})=2$
$\mathrm{X}(\mathrm{HT})=1$
$X(T H)=1$
$X(T T)=0$

Types of Random Variables:

(i) Discrete Random Variables
(ii) Continuous Random Variables

DISCRETE RANDOM VARIABLE

Definition : A discrete random variable is a R.V.X whose possible values consitute finite set of values or countably infinite set of values.

Probability mass function (PMF):

Let X be discrete random variable. Then $P\left(X=x_{i}\right)=p\left(x_{i}\right)=p_{i}$ is said to be a Probability mass function of X, if
(i) $0 \leq p\left(x_{i}\right) \leq 1$
(ii) $\sum_{i} p\left(x_{i}\right)=1$

The collection of pairs $\left\{x_{i}, p_{i}\right\}, i=1,2,3, \ldots$ is called the probability distribution of the random variable X , which is sometimes in the form of a table as given below:

$X=x_{i}$	x_{1}	x_{2}	\cdots	x_{r}	\cdots
$\mathrm{P}\left(X=x_{i}\right)$	p_{1}	p_{2}	\cdots	p_{r}	\cdots

CUMULATIVE DISTRIBUTION FUNCTION

Let X be a R.V. The CDF of X is $F(x)=P(X \leq x)=\sum_{X \leq x} p(x)$
Note : $p\left(x_{i}\right)=P\left(X=x_{i}\right)=F\left(x_{i}\right)-F\left(x_{i-1}\right)$, Where F is the distribution function of the random variable X.

Problems on Discrete Random Variables

1. A Discrete Random Variable X has the following probability

distribution

X	$\mathbf{0}$	1	2	3	4	5	6	7	8

$\mathbf{P}(\mathbf{x})$	\mathbf{a}	3a	5a	7a	9a	11a	13a	15a	17a

(i) Find the value of "a".
(ii) Find $P[X<3], P[0<X<3], P[X \geq 3]$
(iii) Find the distribution of X.

Solution:

(i) We know that $\sum P(x)=1$

$$
\begin{aligned}
& \Rightarrow a+3 a+5 a+7 a+9 a+11 a+13 a+15 a+17 a=1 \\
& \quad \Rightarrow 81 a=1 \\
& \quad \Rightarrow a=\frac{1}{81}
\end{aligned}
$$

(ii) $\quad P[X<3]=P[X=0]+P[X=1]+P[X=2]$

$$
\begin{aligned}
& =a+3 a+5 a \\
& =9 a \\
& =\frac{9}{81}
\end{aligned}
$$

$$
\begin{aligned}
P[0<X<3] & =P[X=1]+P[X=2] \\
& =3 a+5 a \\
& =8 a \\
& =\frac{8}{81} \\
P[X \geq 3]= & 1-P[X<3] \\
& =1-\frac{9}{81}=\frac{72}{81}
\end{aligned}
$$

(iii) Distribution of X :

X	$\mathbf{P}(\mathbf{x})$	$\mathbf{F}(\mathbf{X})=\mathbf{P}[\mathbf{X} \leq x]$
0	a	$\mathrm{F}(0)=\mathrm{P}[\mathrm{X} \leq 0]=\frac{1}{81}$
1	3 a	$\mathrm{F}(1)=\mathrm{P}[\mathrm{X} \leq 1]=F(0)+P(1)=\frac{1}{81}+\frac{3}{81}=\frac{4}{81}$
2	5a	$\mathrm{F}(2)=\mathrm{P}[\mathrm{X} \leq 2]=F(1)+P(2)=\frac{4}{81}+\frac{5}{81}=\frac{9}{81}$
3	7 a	$\mathrm{F}(3)=\mathrm{P}[\mathrm{X} \leq 3]=F(2)+P(3)=\frac{9}{81}+\frac{7}{81}=\frac{16}{81}$
4	9a	$\mathrm{F}(4)=\mathrm{P}[\mathrm{X} \leq 4]=F(3)+P(4)=\frac{16}{81}+\frac{9}{81}=\frac{25}{81}$
5	11a	$\mathrm{F}(5)=\mathrm{P}[\mathrm{X} \leq 5]=F(4)+P(5)=\frac{25}{81}+\frac{11}{81}=\frac{36}{81}$
6	13a	$\mathrm{F}(6)=\mathrm{P}[\mathrm{X} \leq 6]=F(5)+P(6)=\frac{36}{81}+\frac{13}{81}=\frac{49}{81}$
7	15a	$\mathrm{F}(7)=\mathrm{P}[\mathrm{X} \leq 7]=F(6)+P(7)=\frac{49}{81}+\frac{15}{81}=\frac{64}{81}$
8	17a	$\mathrm{F}(8)=\mathrm{P}[\mathrm{X} \leq 8]=F(7)+P(8)=\frac{64}{81}+\frac{17}{81}=\frac{81}{81}$

2. A Discrete Random Variable X has the following probability distribution

X	0	1	2	3	4	5	6	7
$\mathbf{P}(\mathrm{x})$	0	k	2 k	2 k	3 k	\boldsymbol{k}^{2}	$2 k^{2}$	$7 k^{2}+k$

(i) Find the value of " k ".
(ii) Find $P[X<6], P[1<X<5], P[X \geq 6], P[X>2]$
(iii) Find $P[1.5<X<4.5 / X>2]$
(iv) Find the distribution of X and find the value of k if $P[X<k]>\frac{1}{2}$

Solution:

(i) We know that $\sum P(x)=1$

$$
\begin{aligned}
& \Rightarrow 0+k+2 k+2 k+3 k+k^{2}+2 k^{2}+7 k^{2}+k=1 \\
& \Rightarrow 10 k^{2}+9 k=1 \\
& \Rightarrow 10 k^{2}+9 k-1=0 \\
& \Rightarrow(k+1)(10 k-1)=0 \\
& \Rightarrow k=-1(\text { or }) k=\frac{1}{10}
\end{aligned}
$$

(ii) $\quad P[X \geq 6]=P[X=6]+P[X=7]$

$$
\begin{aligned}
& =2 k^{2}+7 k^{2}+k \\
& =9 k^{2}+k \\
& =\frac{9}{100}+\frac{1}{10} \\
& =\frac{19}{100}
\end{aligned}
$$

(iii) $\quad P[X<6]=1-P[X \geq 6]$

$$
\begin{gathered}
=1-\frac{19}{100} \\
=\frac{81}{100}
\end{gathered}
$$

(iv) $\quad P[1<X<5]=P[X=2]+P[X=3]+P[X=4]$

$$
=2 k+2 k+3 k
$$

$$
\begin{aligned}
& =7 k \\
& =\frac{7}{10}
\end{aligned}
$$

(v) $\quad P[1.5<X<4.5 / X>2]=\frac{P[1 \cdot 5<X<4 \cdot 5 \cap X>2]}{P[X>2]}$

$$
=\frac{P[2<X<4 \cdot 5]}{P[X>2]}
$$

$$
\begin{aligned}
& =\frac{P[X=3]+P[X=4]}{P[X>2]} \\
& =\frac{\frac{5}{\frac{10}{7}}}{10} \\
& =\frac{5}{7}
\end{aligned}
$$

Distribution of X :

\mathbf{X}	$\mathbf{P}(\mathbf{x})$	$\mathbf{F}(\mathbf{X})=\mathbf{P}[\mathbf{X} \leq \boldsymbol{x}]$
0	0	$\mathrm{~F}(0)=\mathrm{P}[\mathrm{X} \leq 0]=0$
1	k	$\mathrm{F}(1)=\mathrm{P}[\mathrm{X} \leq 1]=F(0)+P(1)=0+\frac{1}{10}=\frac{1}{10}$
2	2 k	$\mathrm{F}(2)=\mathrm{P}[\mathrm{X} \leq 2]=F(1)+P(2)=\frac{1}{10}+\frac{2}{10}=\frac{3}{10}$
3	2 k	$\mathrm{F}(3)=\mathrm{P}[\mathrm{X} \leq 3]=F(2)+P(3)=\frac{3}{10}+\frac{2}{10}=\frac{5}{10}$
4	3 k	$\mathrm{F}(4)=\mathrm{P}[\mathrm{X} \leq 4]=F(3)+P(4)=\frac{5}{10}+\frac{3}{10}=\frac{8}{10}$

5	k^{2}	$\mathrm{~F}(5)=\mathrm{P}[\mathrm{X} \leq 5]=F(4)+P(5)=\frac{8}{10}+\frac{1}{100}=\frac{81}{100}$
6	$2 k^{2}$	$\mathrm{~F}(6)=\mathrm{P}[\mathrm{X} \leq 6]=F(5)+P(6)=\frac{81}{100}+\frac{2}{100}=\frac{83}{100}$
7	$7 k^{2}+k$	$\mathrm{~F}(7)=\mathrm{P}[\mathrm{X} \leq 7]=F(6)+P(7)=\frac{83}{100}+\frac{7}{100}+\frac{1}{10}=\frac{100}{100}$

The value of $\mathrm{k}=4$ when $P[X<k]>\frac{1}{2}$
3. If the random variable X takes the values $1,2,3$ and 4 such that $2 P(X=$

1) $=3 P(X=2)=P(X=3)=5 P(X=4)$. Find the probability distribution.

Solution:

Let $2 P(X=1)=3 P(X=2)=P(X=3)=5 P(X=4)=k$

$$
\begin{aligned}
& \Rightarrow 2 P(X=1)=k \\
& \Rightarrow P(X=1)=\frac{k}{2} \\
& \Rightarrow 3 P(X=2)=k \\
& \Rightarrow P(X=2)=\frac{k}{3} \\
& \Rightarrow P(X=3)=k \\
& \Rightarrow 5 P(X=3)=k \\
& \Rightarrow P(X=3)=\frac{k}{5}
\end{aligned}
$$

We know that $\sum P(x)=1$

$$
\begin{aligned}
& \Rightarrow P(1)+P(2)+P(3)+P(4)=1 \\
& \Rightarrow \frac{k}{2}+\frac{k}{3}+k+\frac{k}{5}=1 \\
& \Rightarrow \frac{15 k+10 k+30 k+6 k}{30}=1 \\
& \Rightarrow \frac{61 k}{30}=1 \Rightarrow k=\frac{30}{61}
\end{aligned}
$$

The Probability Distribution is

| X | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{P}(\mathrm{x})$ | $\frac{k}{2}=\frac{1}{2} \times \frac{30}{61}=\frac{15}{61}$ | $\frac{k}{3}=\frac{1}{3} \times \frac{30}{61}=\frac{10}{61}$ | $k=\frac{30}{61}$ | $\frac{k}{5}=\frac{1}{5} \times \frac{30}{61}=\frac{6}{61}$ |

4. Suppose that the random variable X assumes three values 0,1 and 2 with probabilities $1 / 3,1 / 6$ and $1 / 2$ respectively. Obtain the distribution function of X.

Solution:

Values of X = x	0	1	2
$\mathrm{P}(\mathrm{x})$	$1 / 3$	$1 / 6$	$1 / 2$
	$\mathrm{P}(0)$	$\mathrm{P}(1)$	$\mathrm{P}(2)$

The distribution of \mathbf{X}

\mathbf{X}	$\mathbf{P}(\mathbf{x})$	$\mathbf{F}(\mathbf{X})=\mathbf{P}[\mathbf{X} \leq \boldsymbol{x}]$
0	0	$\mathrm{~F}(0)=\mathrm{P}[\mathrm{X} \leq 0]=\frac{1}{3}$
1	k	$\mathrm{F}(1)=\mathrm{P}[\mathrm{X} \leq 1]=F(0)+P(1)=\frac{1}{3}+\frac{1}{6}=\frac{1}{2}$
2	2 k	$\mathrm{F}(2)=\mathrm{P}[\mathrm{X} \leq 2]=F(1)+P(2)=\frac{1}{2}+\frac{1}{2}=1$

5. The Probability function of an infinite distribution is given by $\boldsymbol{P}(X=$ $j)=\left(\frac{1}{2}\right)^{j}, j=1,2, \ldots ., \infty$. Verify that the total probability is 1 and find also mean, variance, $P(X$ is even $), P(X$ is divisible by 3$), P(X \geq 5)$

Solution:

x	1	2	3	4	5	\cdots
$\mathrm{P}(\mathrm{X}=\mathrm{x})$	$\frac{1}{2}$	$\left(\frac{1}{2}\right)^{2}$	$\left(\frac{1}{2}\right)^{3}$	$\left(\frac{1}{2}\right)^{4}$	$\left(\frac{1}{2}\right)^{5}$	$\ldots .$.

$$
\begin{array}{r}
\sum p(x)=\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{4}+\cdots \ldots \\
=\frac{1}{2}\left[1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\cdots \cdot\right]=\frac{1}{2}\left[\left(1-\frac{1}{2}\right)^{-1}\right]=\frac{1 / 2}{1 / 2}=1
\end{array}
$$

\therefore Total Probability is 1

Mean, $E(X)=\sum x p(x)$

$$
\begin{aligned}
& =1 \times \frac{1}{2}+2 \times\left(\frac{1}{2}\right)^{2}+3 \times\left(\frac{1}{2}\right)^{3}+4 \times\left(\frac{1}{2}\right)^{4}+\cdots \cdots \\
& =\frac{1}{2}\left[1+2 \times \frac{1}{2}+3\left(\frac{1}{2}\right)^{2}+\cdots \cdot\right] \\
& =\frac{1}{2}\left[\left(1-\frac{1}{2}\right)^{-2}\right]\left(\because 1+2 x+3 x^{2}+\cdots \cdot=(1-x)^{-2}\right) \\
& =\frac{1 / 2}{1 / 4}=2
\end{aligned}
$$

$$
\therefore E(X)=2
$$

$$
E\left(X^{2}\right)=\sum x^{2} p(x)
$$

$$
=1^{2} \times \frac{1}{2}+2^{2} \times\left(\frac{1}{2}\right)^{2}+3^{2} \times\left(\frac{1}{2}\right)^{3}+4^{2} \times\left(\frac{1}{2}\right)^{4}+\cdots \ldots
$$

$$
=\frac{1}{2}\left[1+4 \times \frac{1}{2}+9\left(\frac{1}{2}\right)^{2}+\cdots .\right]
$$

$$
=\frac{1}{2}\left[\left(1+\frac{1}{2}\right)\left(1-\frac{1}{2}\right)^{-3}\right]\left(\because 1+4 x+9 x^{2}+\cdots=(1+x)(1-x)^{-3}\right)
$$

$$
=\frac{1}{2} \times \frac{3}{2} \times \frac{8}{1}=6
$$

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}
$$

$=6-4=2$
$P(X$ is even $)=P(X=2)+P(X=4)+P(X=6)+\ldots$

$$
\begin{aligned}
& =\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{6}+\cdots \ldots \\
& =\left(\frac{1}{2}\right)^{2}\left[1+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{4}+\cdots \ldots\right] \\
& =\frac{1}{4}\left[\left(1-\frac{1}{4}\right)^{-1}\right]=\frac{1}{4} \times \frac{4}{3} \\
& \mathrm{P}(\mathrm{X} \text { is even })=\frac{1}{3}
\end{aligned}
$$

$P(X$ is divisible by 3$)=P(X=3)+P(X=6)+P(X=9)+\ldots$.

$$
\begin{aligned}
&=\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{6}+\left(\frac{1}{2}\right)^{9}+\cdots \ldots \\
&=\left(\frac{1}{2}\right)^{3}\left[1+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{6}+\cdots \ldots\right]
\end{aligned}
$$

$$
=\frac{1}{8}\left[\left(1-\frac{1}{8}\right)^{-1}\right]=\frac{1}{8} \times \frac{8}{7}
$$

$\mathrm{P}(\mathrm{X}$ is divisible by 3$)=\frac{1}{7}$

$$
\mathrm{P}(\mathrm{X} \geq 5)=\mathrm{P}(\mathrm{X}=5)+\mathrm{P}(\mathrm{X}=6)+\mathrm{P}(\mathrm{X}=7)+\ldots
$$

$$
=\left(\frac{1}{2}\right)^{5}+\left(\frac{1}{2}\right)^{6}+\left(\frac{1}{2}\right)^{7}+\cdots \ldots
$$

$$
=\left(\frac{1}{2}\right)^{5}\left[1+\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}+\cdots \ldots\right]
$$

$$
=\frac{1}{32}\left[\left(1-\frac{1}{2}\right)^{-1}\right]=\frac{1}{32} \times 2=\frac{1}{16}
$$

MATHEMATICAL EXPECTATION FOR DISCRETE RANDOM

VARIABLE

Note:
(i) $E(c)=c$
(ii) $\operatorname{Var}(c)=0$
(iii) $E(a X)=a E(X)$
(iv) $E(a X+b)=a E(X)+b$
(v) $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$
(vi) $\operatorname{Var}(a X \pm b)=a^{2} \operatorname{Var}(X)$

Problems:

1. If $\operatorname{Var}(X)=4$, find $\operatorname{Var}(4 X+5)$, where X is a random variable.

Solution:

We know that $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Here $a=4, \operatorname{Var}(X)=4$
$\operatorname{Var}(4 X+5)=4^{2} \operatorname{Var}(X)=16 \times 4=64$
2. Let X be the number on a die when a die is thrown. Find the mean and variance of X.

Solution:

The PMF is given by

x	1	2	3	4	5	6
$\mathrm{P}(\mathrm{X}=\mathrm{x})$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Mean,$E(X)=\sum x p(x)$

$$
\begin{aligned}
& =1 \times \frac{1}{6}+2 \times \frac{1}{6}+3 \times \frac{1}{6}+4 \times \frac{1}{6}+5 \times \frac{1}{6}+6 \times \frac{1}{6} \\
& =\frac{21}{6}=3.5 \\
& =E\left(X^{2}\right)=\sum x^{2} p(x) \\
& =1^{2} \times \frac{1}{6}+2^{2} \times \frac{1}{6}+3^{2} \times \frac{1}{6}+4^{2} \times \frac{1}{6}+5^{2} \times \frac{1}{6}+6^{2} \times \frac{1}{6} \\
& \\
& \quad \operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2} \\
& =15.16-(3.5)^{2}=2.91
\end{aligned}
$$

3. A Fair coin is tossed three times. Let X be the number if tails appearing, Find the probability distribution of \mathbf{X}. And also calculate $\mathbf{E}(\mathbf{X})$

Solution:

S = \{ HHH, HTH,HHT,THH,TTH,THT,HTT,TTT $\}$
X denotes the number of tail
$\therefore \mathrm{X}(\mathrm{HHH})=0, \mathrm{X}(\mathrm{HTH})=1, \mathrm{X}(\mathrm{HHT})=1, \mathrm{X}(\mathrm{THH})=1, \mathrm{X}(\mathrm{TTH})=2$,
$\mathrm{X}(\mathrm{HTT})=2, \mathrm{X}(\mathrm{TTT})=3$
\therefore Random variable X takes the value $0,1,2,3$

$$
\begin{gathered}
P(X=0)=P(H H H)=\frac{1}{8} \\
P(X=1)=P(H T H, H H T, T H H)=\frac{3}{8} \\
P(X=2)=P(T T H, T H T, T T H)=\frac{3}{8} \\
P(X=3)=P(T T T)=\frac{1}{8}
\end{gathered}
$$

The probability function of X is

x	0	1	2	3
$\mathrm{P}(\mathrm{X}=\mathrm{x})$	$\frac{1}{8}$	$\overline{3}$	$\overline{3}$	$\frac{3}{8}$

Mean,$E(X)=\sum x p(x)$

$$
\begin{aligned}
& =0 \times \frac{1}{8}+1 \times \frac{3}{8}+2 \times \frac{3}{8}+3 \times \frac{1}{8} \\
& =\frac{12}{8}=1.5
\end{aligned}
$$

Continuous Random Variable:

If X is a random variable which can take all the values in an interval then X is called continuous random variable.

Properties of Probability Density Function:

The Probability density function of the random variable X denoted by $f(x)$ has the following properties.
(i) $f(x) \geq 0$
(ii) $\int_{-\infty}^{\infty} f(x) d x=1$

Cumulative Distribution Function (CDF):

Properties of CDF:

(i) $F(-\infty)=0$
(ii) $F(\infty)=1$
(iii) $\frac{d}{d x}[F(x)]=f(x)$
(iv) $P(X \leq a)=F(a)$
(v) $P(X>a)=1-F(a)$
(vi) $P(a \leq X \leq b)=F(b)-F(a)$

Problems on Continuous Random Variables:

1. A continuous random variable X has a density function $f(x)=$ $\frac{K}{1+x^{2}},-\infty \leq X \leq \infty$. i) Find the values of K ii) Cumulative distribution function iii) $\mathbf{P}(\mathbf{X}>0)$ iv) Mean of \mathbf{X}.

Solution: Given X is a continuous RV defined in $(-\infty, \infty)$
i) To find of k

We know that $\int_{-\infty}^{\infty} f(x) d x=1$

$$
\begin{aligned}
& \Rightarrow \int_{-\infty}^{\infty} \frac{K}{1+x^{2}} d x=1 \\
& \Rightarrow K \int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}=1 \\
& \Rightarrow K \int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}=1
\end{aligned}
$$

$$
\Rightarrow K\left[\tan ^{-1} x\right]_{-\infty}^{\infty}=1
$$

$$
\Rightarrow K\left[\tan ^{-1} \infty-\tan ^{-1}(-\infty)\right]=1
$$

$$
\Rightarrow K\left[\frac{\pi}{2}+\frac{\pi}{2}\right]=1
$$

$$
\Rightarrow K\left[\frac{2 \pi}{2}\right]=1
$$

$$
\Rightarrow K=\frac{1}{\pi}
$$

ii) $\quad \mathrm{CDF}$ of X

$$
\begin{gathered}
F(x)=P(X \leq x)=k \int_{-\infty}^{x} \frac{d x}{1+x^{2}} \\
=\frac{1}{\pi}\left[\tan ^{-1} x\right]_{-\infty}^{x} \\
=\frac{1}{\pi}\left(\tan ^{-1} x-\tan ^{-1}(-\infty)\right) \\
F(x)=\frac{1}{\pi}\left(\tan ^{-1} x+\frac{\pi}{2}\right) ;-\infty<x<\infty
\end{gathered}
$$

iii)

$$
\begin{aligned}
& P(X>0)=\int_{0}^{\infty} f(x) d x=k \int_{0}^{\infty} \frac{d x}{1+x^{2}} \\
& =\frac{1}{\pi}\left[\tan ^{-1} x\right]_{0}^{\infty} \\
& =\frac{1}{\pi}\left(\tan ^{-1} \infty-\tan ^{-1} 0\right)=\frac{1}{2} \\
& \text { iv) Mean of } X, E(X)=\int_{-\infty}^{x} x f(x) d x \\
& E(X)=0 \quad \because \frac{x}{1+x^{2}} \text { is an odd function }
\end{aligned}
$$

2. A Continuous random variable X can assume any value between $X=2$ and $X=5$ has the density function given by $f(x)=$ $k(1+x)$. Find i) k ii) $p[X>4] \quad$ iii) $P[3>X>4]$

Solution:

Solution: Given X is a continuous RV defined in $(2,5)$
i) To find of k

We know that $\int_{-\infty}^{\infty} f(x) d x=1$

$$
\begin{aligned}
& \Rightarrow \int_{2}^{5} K(1+x) d x=1 \\
& \Rightarrow K \int_{2}^{5}(1+x) d x=1 \\
& \Rightarrow K\left[x+\frac{x^{2}}{2}\right]_{2}^{5}=1 \\
& \Rightarrow K\left[5+\frac{25}{2}-2-2\right]=1 \\
& \Rightarrow K\left[\frac{27}{2}\right]=1 \\
& \Rightarrow K=\frac{2}{27} \\
& \text { ii) } \boldsymbol{p}[\boldsymbol{X}>4]=\int_{4}^{5} f(x) d x \\
& =\boldsymbol{K} \int_{4}^{5}(1+x) d x \\
& =K\left[x+\frac{x^{2}}{2}\right]_{4}^{5} \\
& \Rightarrow K\left[5+\frac{25}{2}-4-8\right]
\end{aligned}
$$

$$
\Rightarrow K\left[\frac{25}{2}-7\right]
$$

$$
=\frac{2}{27}\left[\frac{11}{2}\right]=\frac{11}{27}
$$

$$
\text { iii) } \boldsymbol{P}[3>\boldsymbol{X}>4]=\int_{3}^{4} f(x) d x
$$

$$
\begin{aligned}
=K[x & \left.+\frac{x^{2}}{2}\right]_{3}^{4} \\
& =K\left[4+8-3-\frac{9}{2}\right]
\end{aligned}
$$

$$
=\frac{2}{27}\left[\frac{9}{2}\right]=\frac{1}{3}
$$

$$
P[3>X>4]=\frac{1}{3}
$$

3. If a random variable X has $\operatorname{PDF} f(x)=\left\{\begin{array}{l}\frac{1}{4},|x|<2 \\ 0,|x|>2\end{array}\right.$

$$
\text { Find (i) } P[X<1] \text { ii) } P[|X|>1](i i i) P[2 X+3>5]
$$

Solution:

(i) $\quad P[X<1]=\int_{-2}^{1} f(x) d x$

$$
\begin{aligned}
& =\int_{-2}^{1} \frac{1}{4} d x \\
& =\frac{1}{4}[x]_{-2}^{1} \\
& =\frac{1}{4}[1-(-2)] \\
& =\frac{3}{4}
\end{aligned}
$$

(ii) $\quad P[|X|>1]=1-P[-1<X<1]$

$$
\begin{aligned}
& =1-\int_{-1}^{1} f(x) d x \\
& =1-\int_{-1}^{1} \frac{1}{4} d x \\
& =1-\frac{1}{4}[x]_{-1}^{1} \\
& =1-\frac{1}{4}[1-(-1)] \\
& =1-\frac{2}{4} \\
& =\frac{2}{4}
\end{aligned}
$$

(iii) $\quad P[2 X+3>5]=P[2 X>5-3]$

$$
\begin{aligned}
& =P\left[X>\frac{5-3}{2}\right] \\
& =P\left[X>\frac{2}{2}\right] \\
& =P[X>1] \\
& =\int_{1}^{2} f(x) d x \\
& =\int_{1}^{2} \frac{1}{4} d x \\
& =\frac{1}{4}[x]_{1}^{2}
\end{aligned}
$$

$$
=\frac{1}{4}[2-(1)]=\frac{1}{4}
$$

MATHEMATICAL EXPECTATION OF CONTINUOUS RANDOM

VARIABLES

(i) $E(X)=\int_{-\infty}^{\infty} x f(x) d x$
(ii) $E\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x$
(iii) $\operatorname{Var}(X)=E\left(X^{2}\right)-E[(X)]^{2}$

Problems:

1. Let X be a continuous random variable with probability density function $f(x)=k x(2-x), 0<x<2$. Find (i) k (ii) mean (iii) variance (iv) cumulative distribution function of $\mathbf{X}(\mathbf{v})$ rth moment.

Solution:
(i) To find k,

$$
\begin{aligned}
\int_{0}^{2} f(x) d x=1 & \Rightarrow k \int_{0}^{2}\left(2 x-x^{2}\right) d x=1 \\
& \Rightarrow k\left[\frac{2 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{2}=1 \\
& \Rightarrow k\left[4-\frac{8}{3}\right]=1 \\
& \Rightarrow k\left(\frac{4}{3}\right)=1
\end{aligned}
$$

$$
\Rightarrow k=\frac{3}{4}
$$

(ii) To calculate mean of X

$$
\begin{aligned}
E(X) & =\int_{0}^{2} x f(x) d x \\
& =\int_{0}^{2} x^{2} \frac{3}{4}(2-x) d x \\
& =\frac{3}{4} \int_{0}^{2}\left(2 x^{2}-x^{3}\right) d x \\
& =\frac{3}{4}\left[\frac{2 x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{2} \\
& =\frac{3}{4}\left(\frac{16}{3}-4\right) \\
& =\frac{3}{4} \times \frac{4}{3}=1
\end{aligned}
$$

(iii) To calculate variance of X

$$
\begin{aligned}
E\left(X^{2}\right)= & \int_{0}^{2} x^{2} f(x) d x \\
& =\int_{0}^{2} x^{3} \frac{3}{4}(2-x) d x \\
& =\frac{3}{4} \int_{0}^{2}\left(2 x^{3}-x^{4}\right) d x \\
& =\frac{3}{4}\left[\frac{2 x^{4}}{4}-\frac{x^{5}}{5}\right]_{0}^{2} \\
& =\frac{3}{4}\left(8-\frac{32}{5}\right)
\end{aligned}
$$

$$
=\frac{3}{4} \times \frac{8}{5}=\frac{6}{5}
$$

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left(X^{2}\right)-E[(X)]^{2} \\
& =\frac{6}{5}-1=\frac{1}{5}
\end{aligned}
$$

(iv) To calculate CDF of \mathbf{X}

$$
\begin{aligned}
F_{X}(x)= & P(X \leq x)=\int_{-\infty}^{x} f(x) d x \\
& =\int_{0}^{x} f(x) d x \\
& =\int_{0}^{x} \frac{3}{4} x(2-x) d x \\
& =\frac{3}{4} \int_{0}^{x}\left(2 x-x^{2}\right) d x \\
& =\frac{3}{4}\left[\frac{2 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{x} \\
& =\frac{3}{4}\left(x^{2}-\frac{x^{3}}{2}\right) \\
= & \frac{1}{4}\left(3 x^{2}-x^{3}\right)
\end{aligned}
$$

$$
F(x)=\left\{\begin{array}{cl}
0 ; & x<0 \\
\frac{1}{4}\left(3 x^{2}-x^{3}\right) ; & 0 \leq x<2 \\
1 ; & x \geq 2
\end{array}\right.
$$

(v) To find the rth moment:

$$
E\left(x^{r}\right)=\int_{-\infty}^{\infty} x^{r} f(x) d x
$$

$$
\begin{aligned}
& =\int_{0}^{2} x^{r} \frac{3}{4} x(2-x) d x \\
& =\frac{3}{4} \int_{0}^{2}\left(2 x^{r+1}-x^{r+2}\right) d x \\
& =\frac{3}{4}\left[\frac{2 x^{r+2}}{r+2}-\frac{x^{r+3}}{r+3}\right]_{0}^{2} \\
& =\frac{3}{4}\left[\left(2 \frac{2^{r+2}}{r+2}-\frac{2^{r+3}}{r+3}\right)-(0-0)\right] \\
& =\frac{3}{4} \times 2^{r} 2^{2}\left[\frac{1}{r+2}-\frac{1}{r+3}\right]
\end{aligned}
$$

$$
=6 \cdot \frac{2^{r}}{(r+2)(r+3)}
$$

2. The probability distribution function of a random variable X is

$$
f(x)=\left\{\begin{array}{cc}
x ; & 0<x<1 \\
2-x ; & 1<x<2 \text { Find the cumulative distribution function } \\
0 ; & x>2
\end{array}\right.
$$

of \mathbf{X}.

Solution:

We know that c.d.f $F(x)=\int_{-\infty}^{x} f(x) d x$
(i) When $0<x<1$

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{0} f(x) d x+\int_{0}^{x} f(x) d x \\
& =0+\int_{0}^{x} x d x \\
& =\left[\frac{x^{2}}{2}\right]_{0}^{x}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x^{2}}{2}-0 \\
& =\frac{x^{2}}{2}
\end{aligned}
$$

(ii) When $1<x<2$

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{0} f(x) d x+\int_{0}^{1} f(x) d x+\int_{1}^{x} f(x) d x \\
& =0+\int_{0}^{1} f(x) d x+\int_{1}^{x} x d x \\
& =\left[\frac{x^{2}}{2}\right]_{0}^{1}+\left[2 x-\frac{x^{2}}{2}\right]_{1}^{x} \\
& =\left(\frac{1}{2}-0\right)+\left[\left(2 x-\frac{x^{2}}{2}\right)-\left(2-\frac{1}{2}\right)\right] \\
& =\frac{1}{2}+2 x-\frac{x^{2}}{2}-\frac{3}{2} \\
=2 x & -\frac{x^{2}}{2}-1
\end{aligned}
$$

(iii) When $x>2$

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{0} f(x) d x+\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x+\int_{2}^{x} f(x) d x \\
& =0+\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x+\int_{2}^{x} x d x \\
& =0+\int_{0}^{1} x d x+\int_{1}^{2}(2-x) d x+0 \\
& =\left[\frac{x^{2}}{2}\right]_{0}^{1}+\left[2 x-\frac{x^{2}}{2}\right]_{1}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{1}{2}-0\right)+\left[(4-2)-\left(2-\frac{1}{2}\right)\right] \\
& =\frac{1}{2}+2-\frac{3}{2}=1 \\
F(x) & =\left\{\begin{array}{cc}
\frac{x^{2}}{2} ; & 0<x<1 \\
2 x-\frac{x^{2}}{2}-1 ; & 1<x<2 \\
1 ; & x>2
\end{array}\right.
\end{aligned}
$$

3. The Cumulative distribution function of a random variable X is given by

$$
F(x)=\left\{\begin{array}{c}
0 ; \quad x<0 \\
x^{2} ; \quad 0 \leq x<\frac{1}{2} \\
1-\frac{3}{25}(3-x)^{2} ; \frac{1}{2} \leq x<3 \\
1, \quad x \geq 3
\end{array}\right.
$$

Find the pdf of X and evaluate $P(|X| \leq 1)$ using both pdf and cdf.

Solution:

Given

$$
F(x)=\left\{\begin{array}{cc}
0 ; & x<0 \\
x^{2} ; & 0 \leq x<\frac{1}{2} \\
1-\frac{3}{25}(3-x)^{2} ; \frac{1}{2} \leq x<3 \\
1, & x \geq 3
\end{array}\right.
$$

$\operatorname{Pdf} \operatorname{id} f(x)=\frac{d}{d x}[F(x)]$

$$
f(x)=\left\{\begin{array}{ccc}
0 ; & & x<0 \\
2 x ; & & 0 \leq x<\frac{1}{2} \\
\frac{6}{25}(3-x) ; & \frac{1}{2} \leq x<3 \\
0, & & x \geq 3
\end{array}\right.
$$

To find $P(|X| \leq 1)$ using cdf:

$$
\begin{aligned}
P(|X| \leq 1) & =P(-1 \leq X \leq 1) \\
& =F(1)-F(-1) \\
& =\left[1-\frac{3}{25}(3-1)^{2}\right]-0 \\
& =1-\frac{12}{25} \\
& =\frac{25-12}{25}=\frac{13}{25}
\end{aligned}
$$

To find $P(|X| \leq 1)$ using pdf:

$$
\begin{aligned}
P(|X| \leq 1) & =P(-1 \leq X \leq 1) \\
& =\int_{-1}^{1} f(x) d x \\
& =\int_{-1}^{0} f(x) d x+\int_{0}^{\frac{1}{2}} f(x) d x+\int_{\frac{1}{2}}^{1} f(x) d x \\
& =0+\int_{0}^{\frac{1}{2}} 2 x d x+\int_{\frac{1}{2}}^{1} \frac{6}{25}(3-x) d x
\end{aligned}
$$

$$
\begin{aligned}
& =2\left(\frac{x^{2}}{2}\right)_{0}^{\frac{1}{2}}+\frac{6}{25}\left[3 x-\frac{x^{2}}{2}\right]_{\frac{1}{2}}^{1} \\
& =\frac{1}{4}+\frac{6}{25}\left[3-\frac{1}{2}-\frac{3}{2}+\frac{1}{8}\right] \\
& =\frac{13}{25}
\end{aligned}
$$

1.2 Baye's Theorem

If $B_{1}, B_{2}, \ldots, B_{n}$ be a set of exhaustive and mutually exclusive events associated with a random experiment and D is another event associated with B_{i}, then $P\left(D / B_{i}\right)=\frac{P\left(B_{i}\right) \cdot P\left(D / B_{i}\right)}{\sum_{i=1}^{n} P\left(B_{i}\right) P\left(D / B_{i}\right)}$

State and Prove Bayes Theorem

(OR)

State and Prove Theorem of Probability of Causes.

Soln :
Statement

If $B_{1}, B_{2}, \ldots B_{n}$ be a set of exhaustive and mutually exclusive events associated with random experiment and D is another event associated with (or caused)by Bi. Then

$$
P\left(D \mid B_{i}\right)=\frac{P\left(B_{i}\right) \cdot P\left(D / B_{i}\right)}{\sum_{i=1}^{n} P\left(B_{i}\right) P\left(D / B_{i}\right)}
$$

Proof :

$$
P\left(B_{i} \cap D\right)=P\left(B_{i}\right) \cdot P\left(\frac{D}{B_{i}}\right)
$$

$$
\begin{array}{r}
P\left(D \cap B_{i}\right)=P(D) \cdot P\left(\frac{B_{i}}{D}\right) \\
P\left(B_{i} \mid D\right)=\frac{P\left(B_{i}\right) \cdot P\left(D / B_{i}\right)}{P(D)} \ldots \ldots \tag{1}
\end{array}
$$

The inner circle reprosents the events D.D can occur along with $B_{1}, B_{2}, \ldots B_{n}$ that are exhaustive and mutually exclusive
$\therefore D B_{1}, D B_{1}, \ldots . D B_{n}$ are also mutually exclusive such that

$$
D=D B_{1}+D B_{2}+\cdots+D B_{n}
$$

$$
\therefore D=\sum D B_{i}
$$

$$
P[D]=P\left[\Sigma D B_{i}\right]
$$

$$
=\sum P\left[D B_{i}\right]
$$

$$
=\sum P\left[D \cap B_{\mathrm{i}}\right]
$$

$$
P[D]=\sum_{i=1}^{n} P\left(B_{i}\right) \cdot P\left(D / B_{i}\right)
$$

Substitute $P[D]$ in eqn (1)

$$
\text { (1) } \Rightarrow P\left[B_{i} / D\right]=\frac{P\left(B_{i}\right) \cdot P\left(D / B_{i}\right)}{\sum_{i=1}^{n} P\left(B_{\mathrm{i}}\right) P\left(D / B_{i}\right)}
$$

Hence the proof,

Problem based on Baye's Theorem

1. Four boxes $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ contain fuses. The boxes contain $5000, \mathbf{3 0 0 0}$, 2000 and 1000 fuses respectively. The percentages of fuses in boxes which are defective are $\mathbf{3 \%}, \mathbf{2 \%}, \mathbf{1 \%}$ and 5% respectively.one fuse in selected at random arbitrarily from one of the boxes. It is found to be defective fuse. Find the probability that it has come from box D.
(OR)

Four boxes A,B,C,D contain fuses. Box A contain 5000 fuses , box B contain 3000 fuses, box C contain 2000 fuses and box D contain 1000 fuses. The percentage of fuses in boxes which are defective are $\mathbf{3 \%}, \mathbf{2 \%}, \mathbf{1 \%}$ and $\mathbf{0 . 5 \%}$ respectively. One fuse is select at random from one of the boxes. It is found to be defective fuse. What is the probability that it has come from box D.

Soln:

Since selection ratio is not given
Assume selection ratio is $1: 1: 1: 1$

$$
\text { Total }=1+1+1+1=4
$$

$$
P(A)=\frac{1}{4}
$$

$P(B)=\frac{1}{4}$
$P(C)=\frac{1}{4}$
$P(D)=1 / 4$
Let E be the event selecting a defective fuse from any one of the machine

$$
\begin{aligned}
& P(E / A)=3 \%=0.03 \\
& P(E / B)=2 \%=0.02 \\
& P(E / C)=1 \%=0.01 \\
& \begin{aligned}
& P(E / D)=5 \%=0.05 \\
& P(E)=P(A) P(E / A)+P(B) P(E / B)+P(C) P(F / C)+P(D)(F / D) \\
& \quad= \frac{1}{4} \times 0.03+1 / 4 \times 0.02+1 / 4 \times 0.01+1 / 4 \times 0.05 \\
& \quad= 0.0275 \\
& P(D / E)=\frac{P(D) P(E / D)}{P(E)} \\
&=\frac{\frac{1}{4} \times 0.05}{0.0275}=0.4545 \\
&=0.4545
\end{aligned}
\end{aligned}
$$

2. In a bolt Factory, Machines A, B and C manufacture respectively $\mathbf{2 5 \%}, \mathbf{3 5 \%}$ and $\mathbf{4 0 \%}$ of total output . also out of these output of A, B, C are $5,4,2$ percent respectively are defective. A bolt is drawn at random from the total output and it is found to be defective. What is the probability that it was manufactured by the machine B ?

In a company machine A, B and C manufactured bolts, $\mathbf{2 5 \%}, \mathbf{3 5 \%}$ and $\mathbf{4 0 \%}$ of total output . also out of these output of A, B, C are $5,4,2$ percent respectively are defective. A bolt is taken random from the total output and
it is found to be defective. Find the probability that it was manufactured by the machine \mathbf{B} ?

Soln:

Given, $\mathrm{P}\left(E_{1}\right)=\mathrm{P}(\mathrm{A})=25 \%=0.25$

$$
\begin{aligned}
& \mathrm{P}\left(E_{2}\right)=\mathrm{P}(\mathrm{~B})=35 \%=0.35 \\
& \mathrm{P}\left(E_{3}\right)=\mathrm{P}(\mathrm{C})=40 \%=0.40
\end{aligned}
$$

Let D be the event of drawing defective bolt
$P\left(D / E_{1}\right)=5 \%=\frac{5}{100}=0.05$
$P\left(D / E_{2}\right)=4 \%=0.04$
$\left.P\left(D / E_{3}\right)=2 \%\right)=0 \cdot 02$

To find $P\left(E_{2} / D\right)$
By Bayes theorem
$P\left(E_{2} / D\right)=\frac{P\left(E_{2}\right) P\left(D / E_{2}\right)}{P\left(E_{1}\right) P\left(D / E_{1}\right)+P\left(E_{2}\right) P\left(D / E_{2}\right)+P\left(E_{3}\right) P\left(D / E_{3}\right)}$
$=\frac{(0.35)(0.04)}{(0.25)(0.05)+(0.35)(0.04)+(0.4)(0.02)}$
$=\frac{0.014}{0.0345}$
$=0.406$
3. A bag A contains 2 white and 3 red balls and a bag B contains 4 white and 5 red balls. One ball is drawn at random from one of the
bag and is found to be red. Find the Probability that it was drawn from bag B

(OR)

A box A contains 2 white and 3 red balls and a box B contains 4 white and 5 red balls at random one ball is taking and is found to be red. What is the probability that it was drawn from bag B ?

Soln:
Let B_{1} be the event that the ball is drawn from the bag A.

Let B_{2} be the event that the ball is drawn from the bag B.
Lat A be the event that the drawn ball is red

$$
\begin{aligned}
& P\left(B_{1}\right)=P\left(B_{2}\right)=\frac{1}{2} \\
& P\left(A / B_{1}\right)=\frac{3 C_{1}}{5 C_{1}}=\frac{3}{5} \\
& P\left(A / B_{2}\right)=\frac{5 C_{1}}{9 C_{1}}=\frac{5}{9}
\end{aligned}
$$

$$
P\left(B_{2} / A\right)=\frac{P\left(B_{2}\right) P\left(A / B_{2}\right)}{P\left(B_{1}\right) P\left(A / B_{1}\right)+P\left(B_{2}\right) P\left(A / B_{2}\right)}
$$

$$
=\frac{\left(\frac{1}{2}\right)\left(\frac{5}{9}\right)}{\left(\frac{1}{2}\right)\left(\frac{3}{5}\right)+\left(\frac{1}{2}\right)\left(\frac{1}{9}\right)}
$$

$$
=\frac{\frac{5}{18}}{\frac{52}{90}}
$$

$$
P\left(B_{2} / A\right)=\frac{25}{52}
$$

