5.4 PRINCIPLE OF IMPULSE AND MOMENTUM

The momentum, p , of a body of mass mm which is moving with a velocity v is $\mathrm{p}=\mathrm{m} \times \mathrm{v}=\mathrm{mv}$. The units are Ns.

The impulse of a force is $\mathrm{I}=\mathrm{Ft}$ - when a constant force F acts for a time t . The units are Ns.

The Impulse-Momentum Principle says I= mv-mu which is final momentum initial momentum so Impulse is the change in momentum.

The principle of states that total momentum before impact is equal to total momentum after impact, $\mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2}=\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{~V}_{2}$.

Solved Examples

1.A body weighing 196.2 N slides up a 30° inclined plane under the action of an applied force of 300 N acting parallel to the plane. The coefficient of friction is 0.2. The body moves from rest. Determine at the end of the 4 s , the acceleration, distance travelled, velocity, kinetic energy, work done, momentum and impulse applied on the body.

Solution:
Let $a=$ acceleration of the body

$$
\begin{array}{rlrl}
& & u & =0, t=4 \mathrm{~s} \\
& & s & =u t+\frac{1}{2} a t^{2} \\
\therefore & s & =0+\frac{1}{2} a \times 4^{2}=8 \mathfrak{a} \\
\therefore & v & =u+a t=0+a \times 4 \\
\therefore & v & =4 a
\end{array}
$$

To use work-energy principle, draw F.B.D. and resolve forces parallel and perpendicular to the direction of motion as shown in Fig.

By work-energy principle,

$$
0+\left[300 \times s-196.2 \sin 30 \times 5-0.2 N_{1} \times s\right]=\frac{1}{2}\left(\frac{196.2}{9.81}\right) v^{2}
$$

$$
N_{1}=196.2 \cos 30
$$

Substituting for N, s and v,
$300 \times 8 a-196.2 \sin 30 \times 8 a-0.2 \times 196.2 \cos 30 \times 8 a=\frac{1}{2}\left(\frac{196.2}{9.81}\right)(4 a)^{2}$

$$
\begin{array}{lll}
\therefore & \begin{array}{ll}
a=8.396 \mathrm{~m} / \mathrm{s}^{2} \\
& \therefore
\end{array} & =8 a=8 \times 8.396 \\
& & s=67.168 \mathrm{~m} \\
& & v=4 a=4 \times 8.396 \\
& & v=33.584 \mathrm{~m} / \mathrm{s}
\end{array}
$$

$$
\begin{array}{ll}
& \text { K.E. }=\frac{1}{2} m v^{2}=\frac{1}{2}\left(\frac{196.2}{9.81}\right) \times 33.584^{2} \\
\therefore & \\
& \text { K.E. }=11278.85 \mathrm{~J} \\
& \text { Work done }=\text { Change in } \text { K.E. } \\
& \\
& \text { Work done }=11278.85 \mathrm{~J} \\
& \text { Momentum }=m v=\frac{196.2}{9.81} \times 33.584 \\
\therefore &
\end{array}
$$

Impulse $=$ Change in momentum

```
\therefore\quad Impulse = 671.68 N-s
```

$2 . A 40 \mathrm{~kg}$ block A is connected to a $\mathbf{6 0} \mathbf{k g}$ block B by a spring of constant $\mathrm{k}=180$ N/m. The blocks are placed on a smooth horizontal surface and are at rest when the spring is stretched $2 \mathbf{m}$. If they are released from rest, determine the speeds of blocks A and B, at the instant the spring becomes unstretched.

Solution:

When spring is released, A moves towards right and B moves towards left.
By conservation of momentum,

$$
\begin{align*}
0 & =m_{A} v_{A}+m_{B}\left(-v_{B}\right) \\
\therefore 40 v_{A}-60 v_{B} & =0 \\
v_{A} & =1.5 v_{B} \tag{1}
\end{align*}
$$

By conservation of energy,

$$
\begin{array}{rlrl}
\frac{1}{2} k x^{2} & =\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B} v_{B}^{2} \\
180 \times 2^{2} & =40 v_{A}^{2}+60 v_{B}^{2} \\
180 \times 2^{2} & =40\left(1.5 v_{B}\right)^{2}+60 v_{B}^{2} \\
\therefore \quad & & v_{B} & =2.19 \mathrm{~m} / \mathrm{s} \leftarrow \\
& & v_{A} & =1.5 \times 2.19 \\
\therefore \quad v_{A} & =3.285 \mathrm{~m} / \mathrm{s} \rightarrow
\end{array}
$$

$3 . A 900 \mathrm{~kg}$ car travelling at $48 \mathrm{~km} / \mathrm{h}$ couples to a 680 kg car travelling at $24 \mathrm{~km} / \mathrm{h}$ in the same direction. Determine their common velocity after coupling. What is the amount of energy lost?

Solution:

As collision is plastic, $v_{1}=v_{2}=v$
By conservation of momentum,

$$
\begin{aligned}
m_{1} u_{1}+m_{2} u_{2} & =m_{1} v_{1}+m_{2} v_{2} \\
(900)\left(48 \times \frac{5}{18}\right)+(680)\left(24 \times \frac{5}{18}\right) & =900 v^{4}+680 v \\
\therefore \quad v & =10.464 \mathrm{~m} / \mathrm{s}=37.67 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

$$
\begin{aligned}
\text { Energy lost } & =\left(\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}\right)-\frac{1}{2}\left(m_{1}+m_{2}\right) v^{2} \\
& =\frac{1}{2}(900)\left(48 \times \frac{5}{18}\right)^{2}+\frac{1}{2}(680)\left(24 \times \frac{5}{18}\right)^{2}-\frac{1}{2}(900+680)\left(10.464^{2}\right) \\
& =8609.8 \mathrm{~J} \\
\therefore \text { Energy lost } & =8.61 \mathrm{~kJ}
\end{aligned}
$$

4.A 45 Mg rail car moving at $3 \mathrm{~km} / \mathrm{h}$ is to be coupled, to a 25 Mg car which is at rest. Determine average impulsive force acting on each car during coupling process which lasts for 0.3 s . Also find final velocity of coupled cars.

Solution:

By conservation of momentum,

$$
m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2}
$$

As the collision is plastic, $v_{1}=v_{2}=v$

$$
\begin{aligned}
m_{1} & =45 \times 10^{6} \mathrm{~g}=45 \times 10^{3} \mathrm{~kg} \\
m_{2} & =25 \times 10^{3} \mathrm{~kg} \\
u_{1} & =3 \times \frac{5}{18} \mathrm{~m} / \mathrm{s}=\frac{5}{6} \mathrm{~m} / \mathrm{s} \\
u_{2} & =0 \\
\therefore \quad\left(45 \times 10^{3}\right)\left(\frac{5}{6}\right)+0 & =\left(45 \times 10^{3}+25 \times 10^{3}\right) v \\
\therefore \quad \quad \quad v & =0.5357 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

By impulse-momentum theorem for 25 Mg car,

$$
\begin{aligned}
& m v_{1}+F_{a v} \Delta t=m v_{2} \\
& v_{1}=0, v_{2}=0.5357 \mathrm{~m} / \mathrm{s}, \Delta t=0.3 \mathrm{~s} \\
\therefore & 0+F_{a v} \times 0.3=25 \times 10^{3} \times 0.5357 \\
& \therefore \quad F_{a v}=44.64 \times 10^{3} \mathrm{~N}=44.64 \mathrm{kN}
\end{aligned}
$$

The same result can be obtained using impulse momentum theorem for the 45 kg car with a negative sign as the force on the two cars will have same magnitude but opposite direction.

