I PROJECTION OF POINTS AND STRAIGHT LINES

An element which has no dimensions, it can be situated in the following positions with respect to principal planes of the projections.

- Point situated above H.P and in front of V.P.
- Point situated above H.P and behind V.P
- Point situated below H.P and behind V.P.
- Point situated below H.P and in front of V.P.
- Point situated on H.P and in front of V.P.
- Point situated above H.P and on V.P.
- Point situated on H.P and behind V.P.
- Point situated below H.P and on V.P.
- Point situated on both H.P and V.P.

Conventional Representation:

\square Actual Position of a point designated by capitals i.e. A, B, C, D ...
\square Front view of a point is designated by small letters with dashes i.e. $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime} . .$. .Top view of a point is designated by only small letters i.e. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \ldots$...Side view of a point is designated by small letters with double dashes i.e. $a ", b ", c^{\prime \prime}, d " . .$.
The Intersection of reference planes is a line known as reference line denoted by $x-y$ and the line connecting the front and top view is known as projection line; it is always perpendicular to the principal axis ($x-y$ line).

Problem:

Draw the orthographic projections of the following points?
(a.) Point P is 30 mm . above H.P and 40 mm . in front of VP
(b.) Point Q is 25 mm . above H.P and 35 mm . behind VP
(c.) Point R is 32 mm . below H.P and 45 mm behind VP
(d.) Point Sis 35 mm . below H.P and 42 mm in front of VP
(e.) Point T is in H.P and 30 mm behind VP
(f.) Point U is in V.P and 40 mm . below HP
(g.) Point V is in V.P and 35 mm . above H.P
(h.) Point W is in H.P and 48 mm . in front of VP

Solution:

