Relation

A relation R is a well - defined rule, which tells whether given 2 elements x and y of A are related or not.

If x is related to y, we write $x R y$, otherwise x does not related to y.

Equivalence Relation

Let X be any set. R be a relation defined on X. If R satisfies Reflexive, Symmetric and Transitive then the relation R is said to be an Equivalence relation.

Partial Order Relation

Let X be any set. R be a relation defined on X. Then R is said to be a partial order relation if it satisfies reflexive, antisymmetric and transitive relation.

Example:

Subset relation \subseteq is a Partial order relation.

Solution:

Since any set is a subset to itself, $A \subseteq A$, therefore \subseteq is reflexive.

If $A \subseteq B$ and $B \subseteq A$, then $A=B$, therefore \subseteq is antisymmetric.

If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$, therefore \subseteq is transitive.

Hence \subseteq is a Partial order relation.

Example:2

Divides relation is a Partial order relation.

Solution:

For Z_{+}be the set of positive integer $a, b, c \in Z_{+}$

Since $a / a, /$ is reflexive.

Since a / b and $b / a \Rightarrow a=b$,/ is antisymmetric.

Since a / b and $b / c \Rightarrow a / c$ is transitive.

Therefore, Divides relation " / " is a partial order relation.

Hence the proof.

Partially Ordered Set or Poset:

A set together with a partial order relation defined on it is called partially ordered set or Poset.

Usually, a partial order relation is defined by the symbol " \leq ", this symbol does not necessarily mean "less than or equal to" as we use for real numbers.

For example,

Let \mathbb{R} be the set of real numbers. The relation "less than or equal to" or " \leq " is a partial order on \mathbb{R}. Therefore (\mathbb{R}, \leq) is a Poset.

Comparable Property:

In a Poset for any 2 elements a, b either $a \leq b$ or $b \leq a$ is called comparable property. Otherwise it is called incomparable property.

Totally Ordered Set or Linearly Ordered Set or Chain:

A partially ordered set (ρ, \leq) is said to be totally ordered set or linearly ordered set or chain if any 2 elements are comparable.
i.e., given any 2 elements x and y of a Poset either $x \leq y$ or $y \leq x$

Example:

$a R b$ if $a \leq b$ is a total order.
$a R b$ if a / b is not a total order.

For, Given elements 2 and 3 neither $2 / 3$ nor $3 / 2$.
(i.e., 2 and 3 are not comparable).

Problems:

1. Show that the "greater than or equal to" relation is a Partial ordering on the set of integers.

Solution:

Since $a \geq a$ for every integer a, \geq is reflexive.

If $a \geq b$ and $b \geq a$ then $a=b$. Hence \geq is antisymmetric.

Since $a \geq b$ and $b \geq c$ imply $a \geq c$. Hence \geq is transitive.

Therefore, \geq is a partial order relation on the set of integers.

2. In the Poset $\left(Z^{+}, /\right)$are the integers 3 and 9 comparable? Are 5 and 7 are

 comparable?
Solution:

Since $3 / 9$, the integers 3 and 9 are comparable.

For 5, 7 neither $5 / 7$ nor $7 / 5$

Therefore, the integers 5 and 7 are not comparable (incomparable).

3. Check the following Posets are totally orders set (or linearly ordered set or

Solution:

(i) Consider, the Poset (Z, \leq)

If a and b are integer then either $a \leq b$ or $b \leq a$, for all a, b

Therefore, the Poset (Z, \leq) satisfies comparable property.
(Z, \leq) is a totally ordered set.
(ii) Consider, the Poset $\left(Z^{+}, /\right)$

Take 5 and 7.

Since, neither $5 / 7$ nor $7 / 5$
$\left(Z^{+}, /\right)$does not satisfies the comparable property.

Therefore, $\left(Z^{+}, \eta\right)$ is not a totally ordered set.
4. Show that (N, \leq) is a partially ordered set where N is set of all positive
integers and \leq is defined by $\boldsymbol{m} \leq \boldsymbol{n}$ iff $\boldsymbol{n}-\boldsymbol{m}$ is a non - negative integer.

Solution:

Give N is the set of all positive integer.

The given relation is $m \leq n$ iff $n-m$ is a non - negative integer.
(i) To prove R is reflexive

Now, $\forall x \in N, x-x=0$ is a non - negative integer.

Therefore, $x R x \forall x \in N$.

Therefore R is reflexive.
(ii) To prove \mathbf{R} is Antisymmetric.

Consider $x R y \& y R x$

Since $x R y \Rightarrow x-y$ is a non - negative integer.
$y R x \Rightarrow y-x$ is a non - negative integer.
$\Rightarrow-(x-y)$ is a non- negative integer.
$\Rightarrow x=y$

Therefore R is Antisymmetric.
(iii) To prove R is Transitive.

Assume $x R y \& y R z$

Since $x R y \Rightarrow x-y$ is a non - negative integer.
$y R z \Rightarrow y-z$ is a non - negative integer.
$\Rightarrow(x-y)+(y-z)$ is a non-negative integer.
$\Rightarrow x-z$ is a non - negative integer.
$\Rightarrow x R z$
$x R y \& y R z \Rightarrow x R z$

Therefore R is transitive.

Hence R is partial order relation.

5. Is the Poset $\left(Z^{+}, /\right)$a lattice.

Solution:

Let a and b be any two positive integer.

Then LUB $\{a, b\}=\operatorname{LCM}\{a, b\}$
$\operatorname{GLB}\{a, b\}=\operatorname{GCD}\{a, b\}$

Should exist in Z^{+}.

For, example let $a=4, b=20$

Then LUB $\{a, b\}=\operatorname{LCM}\{4,20\}=1$
$\operatorname{GLB}\{a, b\}=\operatorname{GCD}\{4,20\}=4$

Hence both GLB and LUB exist.

Therefore, the Poset $\left(Z^{+}, /\right)$a lattice.

