Relation

A relation R is a well - defined rule, which tells whether given 2 elements x and y of A are related or not.

If x is related to y, we write xRy, otherwise x does not related to y.

Equivalence Relation

Let X be any set. R be a relation defined on X. If R satisfies Reflexive, Symmetric and Transitive then the relation R is said to be an Equivalence relation.

Partial Order Relation

Let X be any set. R be a relation defined on X. Then R is said to be a partial order relation if it satisfies reflexive, antisymmetric and transitive relation.

Example:

Subset relation \subseteq is a Partial order relation.

Solution:

'^{BSERVE} OPTIMIZE OUTSPREP

Consider any three sets A, B, C

Since any set is a subset to itself, $A \subseteq A$, therefore \subseteq is reflexive.

HARAN AN

If $A \subseteq B$ and $B \subseteq A$, then A = B, therefore \subseteq is antisymmetric.

If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$, therefore \subseteq is transitive.

Hence \subseteq is a Partial order relation.

Example:2

Divides relation is a Partial order relation.

Solution:

EERING For Z_+ be the set of positive integer $a, b, c \in Z_+$

Since a/a,/ is reflexive.

Since a/b and $b/a \Rightarrow a = b/$ is antisymmetric.

Since a/b and $b/c \Rightarrow a/c$ is transitive.

Therefore, Divides relation " / " is a partial order relation.

Hence the proof.

Partially Ordered Set or Poset: 4M, KANYAKUMA

A set together with a partial order relation defined on it is called partially ordered FRVE OPTIMIZE OUTSPR set or Poset.

Usually, a partial order relation is defined by the symbol " \leq ", this symbol does not necessarily mean "less than or equal to" as we use for real numbers.

For example,

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Let \mathbb{R} be the set of real numbers. The relation "less than or equal to" or " \leq " is a partial order on \mathbb{R} . Therefore (\mathbb{R}, \leq) is a Poset.

Comparable Property:

In a Poset for any 2 elements a, b either $a \le b$ or $b \le a$ is called comparable property. Otherwise it is called incomparable property.

Totally Ordered Set or Linearly Ordered Set or Chain:

A partially ordered set (ρ, \leq) is said to be totally ordered set or linearly ordered set or chain if any 2 elements are comparable.

ULAM, KANYAKU

i.e., given any 2 elements x and y of a Poset either $x \le y$ or $y \le x$

Example:

aRb if $a \leq b$ is a total order.

aRb if a/b is not a total order.

For, Given elements 2 and 3 neither 2/3 nor 3/2.

(i.e., 2 and 3 are not comparable).

Problems:

1. Show that the "greater than or equal to" relation is a Partial ordering on the set of integers.

Solution:

Since $a \ge a$ for every integer a, \ge is reflexive.

If $a \ge b$ and $b \ge a$ then a = b. Hence \ge is antisymmetric.

Since $a \ge b$ and $b \ge c$ imply $a \ge c$. Hence \ge is transitive.

Therefore, \geq is a partial order relation on the set of integers.

2. In the Poset $(Z^+,/)$ are the integers 3 and 9 comparable? Are 5 and 7 are comparable?

Solution:

Since 3/9, the integers 3 and 9 are comparable.

For 5, 7 neither 5/7 nor 7/5

Therefore, the integers 5 and 7 are not comparable (incomparable).

3. Check the following Posets are totally orders set (or linearly ordered set or chain) (i) (Z, \leq) (ii) $(Z^+, /)^{RVE}$ OPTIMIZE OUTSPREAD

Solution:

(i) Consider, the Poset (Z, \leq)

If *a* and *b* are integer then either $a \le b$ or $b \le a$, for all a, b

Therefore, the Poset (Z, \leq) satisfies comparable property.

 (Z, \leq) is a totally ordered set.

(ii) Consider, the Poset $(Z^+,/)$

Take 5 and 7.

Since, neither 5/7 nor 7/5

 $(Z^+,/)$ does not satisfies the comparable property.

Therefore, $(Z^+,/)$ is not a totally ordered set.

4. Show that (N, \leq) is a partially ordered set where N is set of all positive

GINEERINGA

integers and \leq is defined by $m \leq n$ iff n - m is a non – negative integer.

Solution:

Give N is the set of all positive integer.

The given relation is $m \le n$ iff n - m is a non – negative integer.

(i) To prove R is reflexive

Now, $\forall x \in N$, x - x = 0 is a non – negative integer.

Therefore, $xRx \forall x \in N$.

Therefore R is reflexive.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

(ii) To prove R is Antisymmetric.

Consider *xRy* & *yRx*

Since $xRy \Rightarrow x - y$ is a non – negative integer.

 $yRx \Rightarrow y - x$ is a non – negative integer.

 $\Rightarrow -(x - y)$ is a non – negative integer.

 $\Rightarrow x = y$

Therefore R is Antisymmetric.

(iii) To prove R is Transitive.

Assume *xRy* & *yRz*

Since $xRy \Rightarrow x - y$ is a non – negative integer.

 $yRz \Rightarrow y - z$ is a non – negative integer. ANY ANY ANY

 $\Rightarrow (x - y) + (y - z) \text{ is a non - negative integer.}$

 $\Rightarrow x - z$ is a non – negative integer.

 $\Rightarrow xRz$

 $xRy \& yRz \Rightarrow xRz$

Therefore R is transitive.

Hence R is partial order relation.

5. Is the Poset $(Z^+,/)$ a lattice.

Solution:

Let a and b be any two positive integer. $\Box \models \models \varphi$

Then LUB $\{a, b\} = LCM \{a, b\}$

GLB $\{a, b\} = \text{GCD} \{a, b\}$

Should exist in Z^+ .

For, example let a = 4, b = 20

Then LUB $\{a, b\} =$ LCM $\{4, 20\} = 1$

GLB $\{a, b\} =$ GCD $\{4, 20\} = 4$

Hence both GLB and LUB exist. AM, KANYAKUM

Therefore, the Poset $(Z^+,/)$ a lattice.

SERVE OPTIMIZE OUTSPREAD