
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8391 DATA STRUCTURES

DEPTH-FIRST SEARCH ALGORITHM

 The depth-first search algorithm progresses by expanding the starting node of G and then going deeper and

deeper until the goal node is found, or until a node that has no children is encountered. When a dead-end is

reached, the algorithm backtracks, returning to the most recent node that has not been completely explored.

 In other words, depth-first search begins at a starting node A which becomes the current node. Then, it

examines each node N along a path P which begins at A. That is, we process a neighbour of A, then a neighbour

of neighbour of A, and so on. During the execution of the algorithm, if we reach a path that has a node N that

has already been processed, then we backtrack to the current node. Otherwise, the unvisited (unprocessed)

node becomes the current node.

 The algorithm proceeds like this until we reach a dead-end (end of path P). On reaching the dead- end, we

backtrack to find another path P¢. The algorithm terminates when backtracking leads back to the starting node

A. In this algorithm, edges that lead to a new vertex are called discovery edges and edges that lead to an

already visited vertex are called back edges.

STEPS

Step 1: SET STATUS = 1 (ready state) for each node in G

Step 2: Push the starting node A on the stack and set its STATUS = 2 (waiting state)

Step 3: Repeat Steps 4 and 5 until STACK is empty

Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed state)

Step 5: Push on the stack all the neighbours of N that are in the ready state (whose STATUS = 1) and set their

STATUS = 2 (waiting state) [END OF LOOP]

Step 6: EXIT

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8391 DATA STRUCTURES

EXAMPLE

Consider the graph G along with its adjacency list, given in the figure below. Calculate the order to print all the nodes

of the graph starting from node H, by using depth first search (DFS) algorithm.

Solution :

Push H onto the stack

STACK : H

POP the top element of the stack i.e. H, print it and push all the neighbours of H onto the stack that are is ready state.

Print H

STACK : A

Pop the top element of the stack i.e. A, print it and push all the neighbours of A onto the stack that are in ready state.

Print A

Stack : B, D

Pop the top element of the stack i.e. D, print it and push all the neighbours of D onto the stack that are in ready state.

Print D

Stack : B, F

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8391 DATA STRUCTURES

Pop the top element of the stack i.e. F, print it and push all the neighbours of F onto the stack that are in ready state.

Print F

Stack : B

Pop the top of the stack i.e. B and push all the neighbours

Print B

Stack : C

Pop the top of the stack i.e. C and push all the neighbours.

Print C

Stack : E, G

Pop the top of the stack i.e. G and push all its neighbours.

Print G

Stack : E

Pop the top of the stack i.e. E and push all its neighbours.

Print E

Stack :

Hence, the stack now becomes empty and all the nodes of the graph have been traversed.

The printing sequence of the graph will be :

H → A → D → F → B → C → G → E

Applications of Depth-First Search Algorithm

Depth-first search is useful for:

 Finding a path between two specified nodes, u and v, of an unweighted graph.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8391 DATA STRUCTURES

 Finding a path between two specified nodes, u and v, of a weighted graph.

 Finding whether a graph is connected or not.

 Computing the spanning tree of a connected graph.

