
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MC4202- ADVANCED DATABASE DESIGNS

UNIT I DISTRIBUTED DATABASES 9

Distributed Systems – Introduction – Architecture – Distributed Database Concepts

– Distributed Data Storage – Distributed Transactions – Commit Protocols – Concurrency

Control – Distributed Query Processing

DISTRIBUTED TRANSACTION

A distributed transaction is a set of operations on data that is performed across two

or more data repositories (especially databases). It is typically coordinated across separate

nodes connected by a network, but may also span multiple databases on a single server.

There are two possible outcomes:

1) all operations successfully complete, or

2) none of the operations are performed at all due to a failure somewhere in the

system.

In the latter case, if some work was completed prior to the failure, that work will be

reversed to ensure no net work was done. This type of operation is in compliance with the

“ACID” (atomicity-consistency-isolation-durability) principles of databases that ensure

data integrity. ACID is most commonly associated with transactions on a single database

server, but distributed transactions extend that guarantee across multiple databases.

The operation known as a “two-phase commit” (2PC) is a form of a distributed

transaction. “XA transactions” are transactions using the XA protocol, which is one

implementation of a two-phase commit operation. A distributed transaction spans multiple

databases and guarantees data integrity.

How Do Distributed Transactions Work?

● Distributed transactions have the same processing completion requirements as regular

database transactions, but they must be managed across multiple resources, making

them more challenging to implement for database developers. The multiple resources

add more points of failure, such as the separate software systems that run the resources

(e.g., the database software), the extra hardware servers, and network failures. This

makes distributed transactions susceptible to failures, which is why safeguards must

be put in place to retain data integrity.

● For a distributed transaction to occur, transaction managers coordinate the resources

(either multiple databases or multiple nodes of a single database). The transaction

manager can be one of the data repositories that will be updated as part of the

transaction, or it can be a completely independent separate resource that is only

responsible for coordination. The transaction manager decides whether to commit a

successful transaction or rollback an unsuccessful transaction, the latter of which

leaves the database unchanged.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MC4202- ADVANCED DATABASE DESIGNS

● First, an application requests the distributed transaction to the transaction manager.

The transaction manager then branches to each resource, which will have its own

“resource manager” to help it participate in distributed transactions. Distributed

transactions are often done in two phases to safeguard against partial updates that

might occur when a failure is encountered. The first phase involves acknowledging

intent to commit, or a “prepare-to-commit” phase. After all resources are

acknowledged, they are then asked to run a final commit, and then the transaction is

completed.

COMMIT PROTOCOLS

In a local database system, for committing a transaction, the transaction manager

has to only convey the decision to commit to the recovery manager. However, in a

distributed system, the transaction manager should convey the decision to commit to all

the servers in the various sites where the transaction is being executed and uniformly

enforce the decision. When processing is complete at each site, it reaches the partially

committed transaction state and waits for all other transactions to reach their partially

committed states. When it receives the message that all the sites are ready to commit, it

starts to commit. In a distributed system, either all sites commit or none of them does.

The different distributed commit protocols are −

● One-phase commit

● Two-phase commit

● Three-phase commit

Distributed One-phase Commit

Distributed one-phase commit is the simplest commit protocol. Let us consider that

there is a controlling site and a number of slave sites where the transaction is being

executed. The steps in distributed commit are −

● After each slave has locally completed its transaction, it sends a “DONE” message to

the controlling site.

● The slaves wait for “Commit” or “Abort” messages from the controlling site. This

waiting time is called a window of vulnerability.

● When the controlling site receives a “DONE” message from each slave, it makes a

decision to commit or abort. This is called the commit point. Then, it sends this

message to all the slaves.

● On receiving this message, a slave either commits or aborts and then sends an

acknowledgement message to the controlling site.

Distributed Two-phase Commit

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MC4202- ADVANCED DATABASE DESIGNS

Distributed two-phase commit reduces the vulnerability of one-phase commit

protocols. The steps performed in the two phases are as follows −

Phase 1: Prepare Phase

● After each slave has locally completed its transaction, it sends a “DONE” message to

the controlling site. When the controlling site has received a “DONE” message from

all slaves, it sends a “Prepare” message to the slaves.

● The slaves vote on whether they still want to commit or not. If a slave wants to commit,

it sends a “Ready” message.

● A slave that does not want to commit sends a “Not Ready” message. This may happen

when the slave has conflicting concurrent transactions or there is a timeout.

Phase 2: Commit/Abort Phase

● After the controlling site has received “Ready” message from all the slaves − o The

controlling site sends a “Global Commit” message to the slaves. o The slaves apply

the transaction and send a “Commit ACK” message to the controlling site.

● When the controlling site receives “Commit ACK” message from all the slaves, it

considers the transaction as committed.

● After the controlling site has received the first “Not Ready” message from any slave

● The controlling site sends a “Global Abort” message to the slaves. o The slaves abort

the transaction and send a “Abort ACK” message to the controlling site.

● When the controlling site receives “Abort ACK” message from all the slaves, it

considers the transaction has aborted.

Distributed Three-phase Commit

The steps in distributed three-phase commit are as follows −

Phase 1: Prepare Phase

● The steps are same as in distributed two-phase commit.

Phase 2: Prepare to Commit Phase

● The controlling site issues an “Enter Prepared State” broadcast message. The slave

sites vote “OK” in response.

Phase 3: Commit / Abort Phase

● The steps are same as two-phase commit except that “Commit ACK”/”Abort ACK”

message is not required.

CONCURRENCY CONTROL

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MC4202- ADVANCED DATABASE DESIGNS

Concurrency control in distributed systems is achieved by a program which is called

scheduler. Schedulers help to order the operations of transactions in such a way that the

resulting logs are serializable. There are two types of the concurrency control that are

locking approach and non-locking approach.

Various Approaches For Concurrency Control.

1. Locking Based Concurrency Control Protocols

Locking-based concurrency control protocols use the concept of locking data items.

A lock is a variable associated with a data item that determines whether read/write

operations can be performed on that data item. Generally, a lock compatibility matrix is

used which states whether a data item can be locked by two transactions at the same time.

Locking-based concurrency control systems can use either one-phase or two-phase locking

protocols.

1. One-phase Locking Protocol: In this method, each transaction locks an item before

use and releases the lock as soon as it has finished using it. This locking method

provides for maximum concurrency but does not always enforce serializability.

2. Two-phase Locking Protocol: In this method, all locking operations precede the

first lock-release or unlock operation. The transaction comprise of two phases. In

the first phase, a transaction only acquires all the locks it needs and do not release

any lock. This is called the expanding or the growing phase. In the second phase,

the transaction releases the locks and cannot request any new locks. This is called

the shrinking phase.

Every transaction that follows a two-phase locking protocol is guaranteed to be

serializable. However, this approach provides low parallelism between two conflicting

transactions.

2. Timestamp Concurrency Control Algorithms:

Timestamp-based concurrency control algorithms use a transaction’s timestamp to

coordinate concurrent access to a data item to ensure serializability. A timestamp is a

unique identifier given by DBMS to a transaction that represents the transaction’s start

time.

These algorithms ensure that transactions are committed in the order dictated by

their timestamps. An older transaction should commit before a younger transaction, since

the older transaction enters the system before the younger one.

Timestamp-based concurrency control techniques generate serializable schedules

such that the equivalent serial schedule is arranged in order of the age of the participating

transactions.

Optimistic Concurrency Control Algorithm:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MC4202- ADVANCED DATABASE DESIGNS

In systems with low conflict rates, the task of validating every transaction for

serializability may lower performance. In these cases, the test for serializability is

postponed to just before commit. Since the conflict rate is low, the probability of aborting

transactions which are not serializable is also low. This approach is called optimistic

concurrency control technique.

In this approach, a transaction’s life cycle is divided into the following three phases

−

● Execution Phase − A transaction fetches data items to memory and performs

operations upon them.

● Validation Phase − A transaction performs checks to ensure that committing its

changes to the database passes serializability test.

● Commit Phase − A transaction writes back modified data item in memory to the disk.

QUERY PROCESSING IN DISTRIBUTED DBMS

A Query processing in a distributed database management system requires the

transmission of data between the computers in a network. A distribution strategy for a

query is the ordering of data transmissions and local data processing in a database system.

Distributed query processing is the procedure of answering queries (which means

mainly read operations on large data sets) in a distributed environment where data is

managed at multiple sites in a computer network.

Query processing involves the transformation of a high-level query (e.g., formulated

in SQL) into a query execution plan (consisting of lower-level query operators in some

variation of relational algebra) as well as the execution of this plan. The goal of the

transformation is to produce a plan which is equivalent to the original query (returning the

same result) and efficient, i.e., to minimize resource consumption like total costs or

response time.

1. Costs (Transfer of data) of Distributed Query processing:

In Distributed Query processing, the data transfer cost of distributed query

processing means the cost of transferring intermediate files to other sites for processing

and therefore the cost of transferring the ultimate result files to the location where that

results are required.

Commonly, the data transfer cost is calculated in terms of the size of the messages.

By using the below formula, we can calculate the data transfer cost:

Data transfer cost = C * Size

C refers to the cost per byte of data transferring and Size is the no. of bytes transmitted.

