ROHININ COLLEGE OF ENGINEERING AND TECHNOLOGY

 Approved by AICTE \& Affliated to anna university Accredited with A $^{+}$grade by NAAC DEPARTMENT OF MECHANICAL ENGINEERINGNAME OF THE SUBJECT: ENGINEERING MECHANICS
SUBJECT CODE : ME3351
REGULATION 2021
UNIT V: DYNAMICS OF PARTICLES

Problem

Two weight 800 N and 400 N are connected by a thread and they move along a rough horizontal plane under the action of force P of 400 N applied to 800 N block, as shown in Fig. Find the acceleration of the weight and tension in the thread.

To find
Acceleration a
Tension T
Soln:
Consider block '200N'

$$
\begin{aligned}
& \sum F_{Y}=0 \\
& R_{N}-200=0 \\
& R_{N}=200 \mathrm{~N} \\
& \sum F_{X}=\mathrm{m} \mathrm{a} \\
& T=F=m \times a \\
& T-\mu \times R N=\frac{200}{9.81} \times a \quad \mu=0.3 \text { assume } \\
& \mathrm{T}-0.3 \times 200=20.38 \times a \\
& \mathrm{~T}-60=20.38 \times a-\cdots----->(1)
\end{aligned}
$$

Consider 800N block

$$
\sum F_{Y}=0
$$

$R_{N}-800=0$
$R_{N}=800 \mathrm{~N}$
$\sum F_{X}=\mathrm{ma}$
$-T+F_{N}=\frac{800}{9.81} \times \mathrm{a}$

$$
\begin{aligned}
& -T+\mu \times R_{N}=81.54 \times \mathrm{a} \\
& -T+0.3 \times 800=81.54 \times a \\
& -T+240=81.54 \times \mathrm{a} \\
& -T+240=81.54 \times \mathrm{a}------>(2)
\end{aligned}
$$

Solving Eqn $1 \& 2$

$$
\mathrm{T}-60=20.38 \times \mathrm{a}
$$

$-\mathrm{T}+240=81.54 \times \mathrm{a}$
$180=101.54 \times \mathrm{a}$

$$
a=\quad 180
$$

$$
101.92
$$

$\mathrm{a}=1.766 \mathrm{~m} / \mathrm{s}^{2}$
'a' Value sub in Eqn 1
$T-60=20.38 \times 1.766$
$T=95.99 N$
Problem:5
Two blocks of mass 10 kg and 5 kg are connected as shown in fig. Assume
$\mathrm{M}_{\mathrm{k}}=0.25$. Find the acceleration and the tension in the string if pulley is weightless and frictionless.

Given:

Block A $=10 \mathrm{~kg}$
Block $B=5 \mathrm{~kg}$
$M_{k}=0.25$
To Find:

1. Acceleration a

2.Tension T

Soln:
Consider block A (10kg)
$\sum F_{Y}=0$

$$
\begin{aligned}
& R_{N}-w=0 \\
& R_{N}=w \\
& R_{N}=98.1 \mathrm{~N}
\end{aligned}
$$

$\sum F_{X}=n a$

$$
\begin{align*}
& T-F_{N}=N 10 \times a \\
& T-M \times R_{N}=10 \times a \\
& T-0.25 \times 98.1=10 a \\
& T-24.52=10 a-----> \tag{1}
\end{align*}
$$

Consider 5 kg block
$\sum F_{Y}=\mathrm{ma}$

$$
T-w=m a
$$

$$
\begin{aligned}
& T-5 \times 9.81=5 \times a \\
& W=5 \times 9.81=49.05 \mathrm{~N} \\
& +T-49.05=5 a----->(2)
\end{aligned}
$$

Solving Eqn $1 \& 2$

$$
\begin{gathered}
T-24.52=10 a \\
T-49.05=5 a \\
24.52=5 a \\
a=\frac{24.52}{5} \\
a=4.905 \mathrm{~m} / \mathrm{s} 2
\end{gathered}
$$

'a' Value sub in Eqn 1

$$
\begin{aligned}
& T-24.52=10 a \\
& T=10 a+24.52 \\
& T=10 \times 4.905+24.52 \\
& T=73.57 \mathrm{~N}
\end{aligned}
$$

Problem 6

A block of 1200 N rest on a rough inclined plane at 12° to the horizontal. It is pulled up the plane by means of a light flexible rope running parallel to the plant and passing over a light frictionless pulley at the top of the plane. The portion of the rope beyond the pulley hangs vertically down and carries a weight of 800 N at its end.

If Coefficient of friction $=0.2$, find a) tension in the rope (b) acceleration with which the body moves up the plane (c) distance moved is after 3 sec after starts from rest.

Given:

Coefficient of friction $\mu=0.2$
Weight of block $w=1200 \mathrm{~N}$
To Find:

1. Tension ' T '
2. Acceleration ' a '
3. Distance moved 3 sec after starts from rest

Soln:

Consider 800 N block
$\sum F_{Y}=\mathrm{ma}$

$$
\begin{align*}
& \mathrm{T}-800=\mathrm{m} \mathrm{a} \\
& T-800=800 / 9.81 \times a \quad 800 \mathrm{~N} \\
& T-800=81.54 a---->(1) \tag{1}
\end{align*}
$$

Consider 1200 N block:

$\sum F_{Y}=0$
$R_{N}-120070=0$
$R_{N}=1127.63=0$
$R_{N}=1127.63 \mathrm{~N}$
$\sum F_{Y}=\mathrm{ma}$

$$
\begin{align*}
& T-1200 \cos 70-F_{N}=m a \\
& T-1200 \cos -M \times R_{N}=\frac{1200}{9.81} \times a \\
& T-410.42-0.3 \times 1127.63=122.32 \times a \\
& T-410.42-338.28=122.3 \times a \\
& T-748.70=122.3 \times a-----> \tag{2}
\end{align*}
$$

Solve Eqn (1) \& (2)

$$
\begin{aligned}
T-800 & =81.54 a \\
T-748 & =122.3 a \\
-51.8 & =-40.76 a
\end{aligned}
$$

$$
\begin{aligned}
& a=\frac{-51.8}{-40.76} \\
& a=1.27 \mathrm{~m} / \mathrm{s} 2
\end{aligned}
$$

'a' Value sub in Eqn (1)
$T-800=81.54 \times a$
$T-800=81.54 \times 1.27$
$T=(81.54 \times 1.27)+800$
$T=903.55 N$
Consider kinetic Eqn
To Find Distance
$S=u t+\frac{1}{2} a t 2$
Initial condition
$S=0 \times 3+1 / 2(1.27) \times(3) 2$

$$
u=0
$$

$$
a=1.27 \mathrm{~m} / \mathrm{s} 2
$$

$S=5.71 m$
$t=3 s e c$

Problem 7

Two blocks of mass 20 kg and 40 kg are connected by a rope passing over a frictionless pulley as shown in fig. (a) Assuming the coefficient of friction as 0.3 for all contact surfaces. Find the tension in the string and the aueleration of the system. Also compute the velocity of the system after 4 sec starting from rest.

Given:
Mass of block A $m A=20 \mathrm{~kg}$
Mass of block B $m B=40 \mathrm{~kg}$
Coefficient of friction $\mu=0.3$
To Find:
Tension in the string T
Acceleration ' a '
Velocity of the system after 4 sec
Solution:
Consider 20 kg block

$\sum F_{Y}=0$

$$
\begin{aligned}
& R_{N A}-196.2 \sin 60=0 \\
& R_{N A}-196.2 \sin 60 \\
& R_{N A}-169.91 N
\end{aligned}
$$

$\sum F_{X}=\mathrm{ma}$

$$
\begin{aligned}
& T-w \cos 60-F_{N A}=m a \\
& T-196.2 \cos 60-\mu \times R_{N A}=20 \times a
\end{aligned}
$$

$$
\begin{align*}
& T-196.2 \cos 60-0.3 \times 169.91=20 \times a \\
& T-98.1-50.973=20 a \\
& T-149.07=20 a----> \tag{1}
\end{align*}
$$

Consider 40 kg block

$$
\begin{aligned}
& \sum F_{Y}=0 \\
& R_{N B}=-392.4 \sin 30=0 \\
& R_{N B}=392.4 \sin 30 \\
& R_{N B}=196.2 N \\
& \sum F_{x}=\mathrm{ma}
\end{aligned}
$$

$$
392.4 \cos 30-T=m a
$$

$$
339.82-0.3 \times R_{N B}-T=40 \times a
$$

$$
339.82-0.3 \times 19.2-T=40 a
$$

$$
280.96-T=40 a----->(2)
$$

solve Eqn 1 \& 2

$$
\begin{aligned}
& T-149.07= \\
& 280.96-T=40 \mathrm{a}
\end{aligned}
$$

$131.89=60 a$

$$
\begin{aligned}
& a=131.89 / 60 \\
& a=2.19 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

' a ' value sub in Eqn (1)
$T-149.07=20 \times 2.19$
$T=193.03 \mathrm{~N}$
Using kinetic Eqn
$V=u+a t$
$V=0+2.198 \times 4$
$\mathrm{u}=0$ Initial stage
$\mathrm{t}=4 \mathrm{sec}$
$V=8.79 \mathrm{~m} / \mathrm{sec}$
Problem:
Two blocks of weight 750 N and 1500 N start from shown in fig. Find the acceleration of each block and the distance travelled by the 750 N block in 2 sec Also find the tension in the string.

Given:

Weight of block $A W_{A}=750 \mathrm{~N}$
Weight of block $B W_{B}=1500 \mathrm{~N}$
Coefficient of friction $\mu=0.3$
To Find:

1. Acceleration
2. Tension
3. Distance travelled by the 750 N in 2 Sec .

Soln

Consider1500N block

$$
\sum F_{Y}=m a
$$

$$
2 T-1500=m \times a
$$

$$
2 T-1500=\frac{1500}{9.81} \times a
$$

$$
2 T-1500=152.90 \times 2 a-------->(1)
$$

Consider 750 N block

$$
\begin{aligned}
& \sum F_{Y}=0 \\
& \quad R_{N}-w \sin 60=0 \\
& R_{N}=w \sin 60 \\
& R_{N}=750 \sin 60 \\
& R_{N}=649.51 N \\
& \sum F_{X}=\mathrm{ma} \\
& \mathrm{~T}-F_{N}-\mathrm{w} \cos 60=m a \\
& \mathrm{~T}-\mu R_{N}-750 \cos 60=\frac{750}{9.81} \times a \\
& \mathrm{~T}-0.3 \times 649.51-750 \cos 60=76.45 \times a \\
& \mathrm{~T}-569-85=76.45 a--------(2)
\end{aligned}
$$

Solve eqn (1) \&(2)

$$
\begin{align*}
& 2 T-1500=152.90 \times 2 a-----------(1) \tag{1}\\
& 2 T-1500=305.8 a \\
& \div 2 \quad T-750=152.9 a------->(1)
\end{align*}
$$

$$
\begin{equation*}
T-750=152.90 \times a------> \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
T-569.85=76.45 \times a--------> \tag{1}
\end{equation*}
$$

$-180.15=76.45 a$

$$
a=\frac{-180.15}{76.45}
$$

$$
\mathrm{a}=-2.35^{\mathrm{m}} / \mathrm{s}^{2}
$$

a value sub in Eqn (1)

$$
\begin{aligned}
& T-750=152.9 \times(-2.35) \\
& T-750=152.9 \times(-359.31)
\end{aligned}
$$

$$
\begin{aligned}
& T=750=-359.31 \\
& T=-359.3+750 \\
& T=390.68 N
\end{aligned}
$$

Distance travelled

$$
\begin{aligned}
& s=u t+\frac{1}{2} \text { at } 2 \quad \mathrm{u}=0 \mathrm{t}=2 \\
& s=0 \times 2+\frac{1}{2} \times(-2.35) \times(2) 2 \\
& s=-4.7 \mathrm{~m}
\end{aligned}
$$

