1.6. MOHR'S CIRCLE

Mohr's circle is a graphical method of finding normal, tangential and resultant stresses on an oblique plane. Mohr's circle will be drawn for the following cases:
(i) A body subjected to two mutually perpendicular principal tensile stresses of unequal intensities
(ii) A body subjected to two mutually perpendicular principal stresses which are unequal and unlike (i.e., one is tensile and other is compressive).
(iii) A body subjected to two mutually perpendicular principal tensile stresses accompanied by a simple shear stress.

1.26.1 Mohr's Circle When A Body Is Subjected To Two Mutually Perpendicular Principal Tensile Stresses Of Unequal Intensities.

Consider a rectangular body subjected to two mutually perpendicular principal tensile stresses of unequal intensities. It is required to find the resultant stress on an oblique plane.

Let $\sigma_{1}=$ Major tensile stress
$\sigma_{2}=$ Minor tensile stress and
$\theta=$ Angle made by the oblique plane with the axis of minor tensile stress.
Mohr's Circle is drawn as follows:
Take any point A and draw a horizontal line through A . Take $\mathrm{AB}=\sigma_{1}$
and $\mathrm{AC}=\sigma_{2}$ towards right from A to some suitable scale. With BC as diameter describe a circle. Let O is the centre of the circle. Now through O , draw a line OE making an angle 2θ with OB.

From E, draw ED perpendicular on AB. Join AE. Then the normal and tangential stresses on the oblique plane are given by AD and ED respectively. The resultant stress on the oblique plane is given by AE

From Fig.
Length AD = Normal stress on oblique plane
Length ED $=$ Tangential stress on oblique plane.
Length $\mathrm{AE}=$ Resultant stress on oblique plane.
Radius of Mohr's circle $=\frac{\sigma 1-\sigma 2}{2}$
Angle $\quad \emptyset=$ obliquity.
Problem1.25.The tensile stresses at a point across two mutually perpendicular planes are $120 \mathrm{~N} / \mathrm{mm}^{2}$ and $60 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the normal, tangential and resultant stresses on a plane inclined at 30° to the axis of minor stress by Mohr's circle method

Given Data

Major principal stress, $\sigma_{1}=120 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile)
Minor principal stress, $\sigma_{2}=60 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile)
Angle of oblique plane with the axis of minor principal stress,

$$
\theta=30^{\circ}
$$

To find
The normal, tangential and resultant stresses

Solution

Scale. Let $1 \mathrm{~cm}=10 \mathrm{~N} / \mathrm{mm}^{2}$
Then

$$
\begin{aligned}
& \sigma_{1}=\frac{120}{10}=12 \mathrm{~cm} \quad \text { and } \\
& \sigma_{2}=\frac{60}{10}=6 \mathrm{~cm}
\end{aligned}
$$

Mohr's circle is drawn as:
Take any point A and draw a horizontal line through A . Take $\mathrm{AB}=\sigma_{1}=12 \mathrm{~cm}$ and AC

$=\sigma_{2}=6 \mathrm{~cm}$.
With BC as
diameter (i.e., $\mathrm{BC}=12-6=6 \mathrm{~cm}$) describe a circle. Let O is the centre of the circle. Through O , draw a line OE making an angle 2θ (i.e., $2 \times 30=60^{\circ}$) with OB. From E, draw ED perpendicular to CB. Join AE. Measure the length AD, ED and AE.
By measurements :
Length $\mathrm{AD}=10.50 \mathrm{~cm}$
Length $\mathrm{ED}=2.60 \mathrm{~cm}$
Length $\mathrm{AE}=10.82 \mathrm{~cm}$
Then normal stress $=$ Length $\mathrm{AD} \times$ Scale

$$
=10.50 \times 10=\mathbf{1 0 5 N} / \mathbf{m m}^{2}
$$

Tangential or shear stress $=$ Length ED \times Scale

$$
=2.60 \times 10=\mathbf{2 6} \mathbf{N} / \mathbf{m m}^{2} .
$$

Resultant stress $=$ Length AE \times Scale.

$$
=10.82 \times 10=\mathbf{1 0 8 . 2 N} / \mathbf{m m}^{2} .
$$

1.26.2 Mohr's Circle when a Body is subjected to two Mutually perpendicular Principal stresses which are Unequal and Unlike (i.e., one is Tensile and other is Compressive).

Consider a rectangular body subjected to two mutually perpendicular principal stresses which are unequal and one of them is tensile and the other is compressive. It is required to find the resultant stress on an oblique plane.

Let $\sigma_{1}=$ Major principal tensile stress
$\sigma_{2}=$ Minor principal compressive stress and
$\theta=$ Angle made by the oblique plane with the axis of minor tensile stress.
Mohr's Circle is drawn as follows:
Take any point A and draw a horizontal line through A on both sides of A as shown in fig. Take $\mathrm{AB}=\sigma_{1}(+)$ towards right of A and $\mathrm{AC}=\sigma_{2}(-)$ towards left of A to some suitable scale. Bisect BC at O . With O as centre and radius equal to CO or OB , draw a circle. Through O draw a line OE making an angle 2θ with OB .

From E, draw ED perpendicular to AB.Join AE and CE. Then the normal and tangential stresses on the oblique plane are given by AD and ED respectively. The resultant stress on the oblique plane is given by AE

From Fig.
Length $\mathrm{AD}=$ Normal stress on oblique plane
Length ED = Tangential stress on oblique plane.
Length $\mathrm{AE}=$ Resultant stress on oblique plane.
Radius of Mohr's circle $=\frac{\sigma_{1}+\sigma_{2}}{2}$
Angle
$\emptyset=$ obliquity.

Problem1.26. The stresses at a point in a bar are $200 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile) and $100 \mathrm{~N} / \mathrm{mm}^{2}$ (compressive). Determine the resultant stress in magnitude and direction on a plane inclined at 60° to the axis of major stress. Also determine the maximum intensity of shear stress in the material at the point.

Given Data

Major principal stress, $\sigma_{1}=200 \mathrm{~N} / \mathrm{mm}^{2}$
Minor principal stress, $\sigma_{2}=-100 \mathrm{~N} / \mathrm{mm}^{2}$
(-ve sign is due to compressive stress)
Angle of oblique plane with the axis of minor principal stress,

$$
\theta=90^{\circ}-60^{\circ}=30^{\circ}
$$

To find

The Magnitude and direction Resultant stress and maximum intensity of shear stress

Solution

Scale. Let $1 \mathrm{~cm}=20 \mathrm{~N} / \mathrm{mm}^{2}$
Then

$$
\begin{aligned}
& \sigma_{1}=\frac{200}{20}=10 \mathrm{~cm} \text { and } \\
& \sigma_{2}=-\frac{100}{20}=-5 \mathrm{~cm}
\end{aligned}
$$

Mohr's circle is drawn as:
Take any point A and draw a horizontal line through A on both sides of A as shown in fig. Take $\mathrm{AB}=\sigma_{1}=10 \mathrm{~cm}$ towards right of A and $\mathrm{AC}=\sigma_{2}=-5 \mathrm{~cm}$ towards left of A to some suitable scale. Bisect BC at O . With O as centre and radius equal to CO or OB , draw a circle. Through O draw a line OE making an angle 2θ (i.e., $2 \times 30=60^{\circ}$) with OB .

From E, draw ED perpendicular to AB.Join AE and CE. Then the normal and tangential stresses on the oblique plane are given by AD and ED respectively. The resultant stress on the oblique plane is given by AE

By measurements:
Length $\mathrm{AD}=6.25 \mathrm{~cm}$
Length $\mathrm{ED}=6.5 \mathrm{~cm}$ and
Length $\mathrm{AE}=9.0 \mathrm{~cm}$
Then normal stress $=$ Length $\mathrm{AD} \times$ Scale

$$
=6.25 \times 20=\mathbf{1 2 5 N} / \mathbf{m m}^{2}
$$

Tangential or shear stress $=$ Length $\mathrm{ED} \times$ Scale

$$
=6.5 \times 20=\mathbf{1 3 0} \mathbf{N} / \mathrm{mm}^{2} .
$$

Resultant stress $=$ Length $\mathrm{AE} \times$ Scale .

$$
=9 \times 20=\mathbf{1 8 0 N} / \mathbf{m m}^{2}
$$

1.26.3. Mohr's Circle when a Body is subjected two mutually perpendicular principal Tensile Stresses Accompanied by a simple shear stress.

Consider a rectangular body subjected to two mutually perpendicular principal tensile stresses of unequal intensities accompanied by a simple shear stress. It is required to find the resultant stress on an oblique plane.

Let $\sigma_{1}=$ Major tensile stress
$\sigma_{2}=$ Minor tensile stress and
$r=$ Shear stress across face BC and AD
$\theta=$ Angle made by the oblique plane with the axis of minor tensile stress.
According to the principle of shear stress, the faces AB and CD will also be subjected to a shear stress of r

Mohr's Circle is drawn as follows:
Take any point A and draw a horizontal line through A . Take $\mathrm{AB}=\sigma_{1}$
and $\mathrm{AC}=\sigma_{2}$ towards right from A to some suitable scale. Draw perpendiculars at B and C and cut off BF and CG equal to shear stress r to the same scale. Bisect BC at O. Now with O as centre and radius equal to OG or OF draw a circle. Through O, draw a line OE making an angle 2θ with OF as shown in Fig.

From E, draw ED perpendicular on CB.Join AE. Then the normal and tangential stresses on the oblique plane are given by AD and ED respectively. The resultant stress on the oblique plane is given by AE

From Fig.
Length $\mathrm{AD}=$ Normal stress on oblique plane
Length ED = Tangential stress on oblique plane.
Length $\mathrm{AE}=$ Resultant stress on oblique plane.
Radius of Mohr's circle $=\frac{\sigma_{1}-\sigma_{2}}{2}$
Angle

$$
\emptyset=\text { obliquity }
$$

Problem1.27.A rectangular block of material is subjected to a tensile stress of $65 \mathrm{~N} / \mathrm{mm}^{2}$ on one plane and a tensile stress of $35 \mathrm{~N} / \mathrm{mm}^{2}$ on the plane right angles on the former. Each of the above stresses is accompanied by a shear stress of $25 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the Normal and Tangential stress a plane inclined at 45° to the axis of major stress.

Given Data

Major principal stress, $\sigma_{1}=65 \mathrm{~N} / \mathrm{mm}^{2}$
Minor principal stress, $\sigma_{2}=35 \mathrm{~N} / \mathrm{mm}^{2}$
Shear stress,

$$
r=25 \mathrm{~N} / \mathrm{mm}^{2}
$$

Angle of oblique plane with the axis of minor principal stress,

$$
\theta=90^{\circ}-45^{\circ}=45^{\circ}
$$

To Find

The Normal stress and Tangential stress.

Solution

Scale. Let $1 \mathrm{~cm}=10 \mathrm{~N} / \mathrm{mm}^{2}$
Then

$$
\begin{aligned}
& \sigma_{1}=\frac{65}{10}=6.5 \mathrm{~cm} \\
& \sigma_{2}=\frac{35}{10}=3.5 \mathrm{~cm} \text { and } \\
& r=\frac{25}{10}=2.5 \mathrm{~cm}
\end{aligned}
$$

Mohr's circle is drawn as:
Take any point A and draw a horizontal line through A on both sides of A as shown in fig. Take $\mathrm{AB}=\sigma_{1}=6.5 \mathrm{~cm}$ and $\mathrm{AC}=\sigma_{2}=3.5 \mathrm{~cm}$ towards right of A to some suitable scale. Draw perpendiculars at B and C and cut off BF and CG equal to shear stress $r=2.5 \mathrm{~cm}$ to the same scale. Bisect BC at O. Now with O as centre and radius equal to OG or OF draw a circle. Through O, draw a line OE making an angle $2 \theta($ i.e $2 \times 45=90$) with OF as shown in Fig.

From E, draw ED perpendicular on CB.Join AE. Then the normal and tangential stresses on the oblique plane are given by AD and ED respectively. The resultant stress on the oblique plane is given by AE

By measurements :
Length $\mathrm{AD}=7.5 \mathrm{~cm}$ and
Length ED $=1.5 \mathrm{~cm}$
Then normal stress $=$ Length $\mathrm{AD} \times$ Scale

$$
=7.5 \times 10=\mathbf{7 5 N} / \mathrm{mm}^{2}
$$

Tangential or shear stress $=$ Length ED \times Scale

$$
=1.5 \times 10=\mathbf{1 5} \mathrm{N} / \mathrm{mm}^{2} .
$$

IMPORTANT TERMS

Stress (σ)	$\sigma=\frac{p}{A}$	$p=$ Load $A=$ area of cross section
Strain(e)	$e=\frac{d l}{l}$	$d l=$ change in length $l=$ original length
Lateral strain	$=\frac{d d}{d}=\frac{d t}{t}=\frac{d b}{b}$	$\mathrm{d}=$ diameter $\mathrm{t}=$ thickness $\mathrm{b}=$ width
Young's Modulus(E)	$E=\frac{\sigma}{e}$	$\sigma=$ stress $e=$ strain
Shear modulus (or) Modulus of rigidity(C)	$C=\frac{1}{\varphi}$	$r=$ shear stress $\varphi=$ shear strain

Max. Normal stress	$=\sigma$	$\mathrm{A}=$ area of cross section
Max. shear (or) Tangential stress	$=\frac{\sigma}{2}$	$\theta=$ angle of oblique plane with the normal cross section of the bar $r=$ shear stress
A member subjected to two like stress in mutually perpendicular direction		
Normal stress	$\sigma=\frac{\sigma_{1}+o_{2}}{2}+\frac{\sigma_{1}-o_{2}}{2} \cos 2 \theta$	$\begin{aligned} & \sigma_{1}=\text { Major tensile stress } \\ & \sigma_{2}=\text { Minor tensile stress } \end{aligned}$
Tangential (or) shear stress	$\sigma_{t}=\frac{\sigma_{1}{ }^{\sigma_{2}}}{2} \sin 2 \theta$	$\theta=$ angle of oblique plane with the normal cross section of the bar
Resultant stress	$\sigma_{R}=\sqrt{\sigma_{n}{ }^{2}+\sigma_{t}{ }^{2}}$	When compressive stress put - ve sign
Position of obliquity	$\emptyset=\tan ^{-1} \frac{\sigma_{t}}{\sigma_{n}}$	When tensile force is given, we have to find tensile stress $=$
Max. shear stress	$\left(\sigma_{t}\right)_{\text {max }}=\frac{{ }^{\sigma_{1}}{ }^{\sigma_{2}}}{2}$	force/that cross section area
A member subjected to two like stress in mutually perpendicular direction with shear stress		
Normal stress	$\begin{aligned} \sigma_{n}= & \frac{\sigma_{1}+o_{2}}{2}+\frac{\sigma_{1}-o_{2}}{2} \cos 2 \theta \\ & \sigma-\sigma+r \sin 2 \theta \end{aligned}$	$\sigma_{1}=$ Major tensile stress $\sigma_{2}=$ Minor tensile stress $\theta=$ angle of oblique plane with the normal cross section of the bar When compressive stress put - ve sign
Tangential (or) shear stress	$\sigma_{t}=\frac{1}{2} \frac{2}{} \sin 2 \theta-r \cos 2 \theta$	
Resultant stress	$\sigma_{R}=\sqrt{\sigma_{n}{ }^{2}+\sigma_{t}{ }^{2}}$	
Position of principal plane	$\tan 2 \theta=\frac{\angle r}{\sigma_{1}-\sigma_{2}}$	When tensile force is given, we have to find tensile stress = force/that cross section area When inclined stress is given it should be resolved into tensile stress and shear stress
Max. shear (or) Tangential stress	$\left(\sigma_{t}\right)_{\max }=\sqrt{\left(\frac{\sigma_{1}-\sigma_{2}}{2}\right)^{2}+r^{2}}$	
Position of max. shear (or) Tangential stress	$\tan 2 \theta=\frac{v_{2}-o_{1}}{2 r}$	
Major principal stress	$\frac{\sigma_{1}+\sigma_{2}}{2}+\sqrt{ }\left(\frac{\sigma_{1}-\sigma_{2}}{2}\right)^{2}+r^{2}$	
Minor principal stress	$\frac{\sigma_{1}+\sigma_{2}}{2}-\sqrt{ }\left(\frac{\sigma_{1}-\sigma_{2}}{2}\right)^{2}+r^{2}$	

A body subjected to two mutually perpendicular principal tensile stresses

Step1: select suitable scale
Step2: to draw a horizontal line $\mathrm{AB}=\sigma_{1}$
Step3: to draw AC $=\sigma_{2}$
Step4: draw a circle with $B C$ as diameter with O as centre
Step4: draw a line OE making an angle 2θ with $O B$
Step5: from E to draw ED perpendicular to AB
Result:
Length $\mathrm{AD}=$ Normal stress
Length ED = Tangential (or) shear stress
Length $\mathrm{AE}=$ Resultant stress
Length $\mathrm{OC}=\mathrm{OB}=$ Radius of mohr's circle $=$ Max. shear stress

Angle of obliquity $=2 \emptyset=\angle \mathrm{EAD}$
A body subjected to two mutually perpendicular principal tensile stresses which are unlike (Tensile and compressive)

All the above procedure are same but step 3 will be varied. Because for compressive stress is in -ve sign, hence to draw a line AC in negative directon

A body subjected to two mutually perpendicular principal tensile stresses with simple shear stress
Step1: select suitable scale
Step2: to draw a horizontal line $\mathrm{AB}=\sigma_{1}$
Step3: to draw $\mathrm{AC}=\sigma_{2}$
Step4: draw a perpendicular at B and C as BF and $\mathrm{CG}=r$
Step5: joint the point $G \& F$ which intersect line $B C$ at O.
Step6: draw a circle with O as centre and $\mathrm{OG}=\mathrm{OF}$ as
radius. Step7: draw a line OE making an angle 2θ with OF
Step8: from E to draw ED perpendicular to AB
Result:
Length AD = Normal stress
Length ED = Tangential (or) shear stress
Length AE = Resultant stress
Length $\mathrm{OG}=\mathrm{OF}=$ Radius of mohr's circle $=$ Max.shear stress
Angle of obliquity $=2 \emptyset=\angle \mathrm{EAD}$
Length AM= Max. Normalstress

Length AL =Min. Normal stress

THEORETICAL QUESTIONS

TWO MARKS:

1. Define stress and its types
2. Define strain.
3. Define tensile stress and tensile strain.
4. Define the three Elastic moduli.
5. Define shear strain and Volumetric strain
