
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 FILE HANDLING

 A file is a collection of bytes stored on a secondary storage device, which is

generally a disk of some kind. The collection of bytes may be interpreted, for

example, as characters, words, lines, paragraphs and pages from a textual

document; fields and records belonging to a database; or pixels from a graphical

image.

 The meaning attached to a particular file is determined entirely by the data

structures and operations used by a program to process the file. It is conceivable

(and it sometimes happens) that a graphics file will be read and displayed by a

program designed to process textual data.

 The result is that no meaningful output occurs (probably) and this is to be

expected. A file is simply a machine decipherable storage media where

programs and data are stored for machine usage.

 Why we need file?

 When a program is terminated, the entire data is lost. Storing in a file will

preserve your data even if the program terminates.

 If you have to enter a large number of data, it will take a lot of time to enter

them all. However, if you have a file containing all the data, you can easily

access the contents of the file using few commands in C. It is possible easily

move your data from one computer to another without any changes.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 File Operations

 In programming, we may require some specific input data to be generated

several numbers of times. Sometimes, it is not enough to only display the data

on the console. The data to be displayed may be very large, and only a limited

amount of data can be displayed on the console, and since the memory is

volatile, it is impossible to recover the programmatically generated data again

and again.

 However, if we need to do so, we may store it onto the local file system which is

volatile and can be accessed every time. Here, comes the need of file handling in

C.

 File handling in C enables us to create, update, read, and delete the files stored

on the local file system through our C program. The following operations can be

performed on a file.

 Creation of the new file

 Opening an existing file

 Reading from the file

 Writing to the file

 Deleting the file

 Types of Files

 There are two kinds of files in which data can be stored in two ways either in

characters coded in their ASCII character set or in binary format. They are

1. Text Files (or) ASCII file

2. Binary Files

Text Files (or) ASCII file

 The file that contains ASCII codes of data like digits, alphabets and symbols is

called text file (or) ASCII file.

Binary Files

 A binary file is a file that uses all 8 bits of a byte for storing the information .It is

the form which can be interpreted and understood by the computer.

 The only difference between the text file and binary file is the data contain in

text file can be recognized by the word processor while binary file data can’t be

recognized by a word processor.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

1. wb(write)

This opens a binary file in write mode.

SYNTAX: fp=fopen(“data.dat”,”wb”);

2. rb(read)

This opens a binary file in read mode

SYNTAX:fp=fopen(“data.dat”,”rb”);

3. ab(append)

This opens a binary file in a Append mode i.e. data can be added at the end

of file.

SYNTAX: fp=fopen(“data.dat”,”ab”);

4. r+b(read+write)

This mode opens preexisting File in read and write mode.

SYNTAX: fp=fopen(“data.dat”,”r+b”);

5. w+b(write+read)

This mode creates a new file for reading and writing in Binary mode.

SYNTAX: fp=fopen(“data.dat”,”w+b”);

6. a+b(append+write)

This mode opens a file in append mode i.e. data can be written at the end of

file.

SYNTAX: fp=fopen(“data.dat”,”a+b”);

Opening Modes in Standard I/O

r Open for reading If the file does not exist, fopen() returns

NULL

rb Open for reading in binary

mode.

If the file does not exist, fopen() returns

NULL.

w Open for writing. If the file exists, its contents are overwritten.

If the file does not exist, it will be created.

wb Open for writing in binary

mode.

If the file exists, its contents are overwritten.

If the file does not exist, it will be created.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

a Open for append. i.e, Data is

added to the end of file.

If the file does not exists, it will be created.

ab Open for append in binary

mode. i.e, Data is added to

end of file.

If the file does not exists, it will be created.

r+ Open for both reading and

writing.

If the file does not exist, fopen() returns

NULL.

rb+ Open for both reading and

writing in binary file.

If the file does not exist, fopen() returns

NULL

w+ Open for both reading and

writing.

If the file exists, its contents are overwritten.

If the file does not exist, it will be created.

wb+ Open for both reading and

writing in binary mode.

If the file exists, its contents are overwritten.

If the file does not exist, it will be created.

a+ Open for both reading and

appending.

If the file does not exists, it will be created.

ab+ Open for both reading and

appending in binary mode.

If the file does not exists, it will be created.

Closing a File: fclose(fptr);

 The file (both text and binary) should be closed after reading/writing. Closing a

file is performed using library function fclose().

Reading and writing to a text file

 The functions fprintf() and fscanf() are used to read or write the file They are

just the file versions of printf() and scanf(). The only difference is that, fprint

and fscanf expects a pointer to the structure FILE.

Writing to a text file

Program 2.20: Write to a text file using fprintf()

#include <stdio.h>

int main()

{

int num;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

FILE *fptr;

fptr = fopen(“C:\\program.txt”,”w”);

if(fptr == NULL)

{

printf(“Error!”);

exit(1);

}

printf(“Enter num: “);

scanf(“%d”,&num);

fprintf(fptr,”%d”,num);

fclose(fptr);

return 0;

}

 This program takes a number from user and stores in the file program.txt. After

you compile and run this program, you can see a text file program.txt created in

C drive of your computer. When you open the file, you can see the integer you

entered.

Reading from a text file

Program 2.21: Read from a text file using fscanf()

#include <stdio.h>

int main()

{

int num;

FILE *fptr;

if ((fptr = fopen(“C:\\program.txt”,”r”)) == NULL){

printf(“Error! opening file”);

// Program exits if the file pointer returns NULL.

exit(1);

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

fscanf(fptr,”%d”, &num);

printf(“Value of n=%d”, num);

fclose(fptr);

return 0;

}

Reading and writing to a binary file

 Functions fread() and fwrite() are used for reading from and writing to a file on

the disk respectively in case of binary files.

Writing to a binary file

 To write into a binary file, you need to use the function fwrite(). The functions

takes four arguments: Address of data to be written in disk, Size of data to be

written in disk, number of such type of data and pointer to the file where you

want to write.

fwrite(address_data,size_data,numbers_data,pointer_to_file);

Program 2.22: Writing to a binary file using fwrite()

#include <stdio.h>

struct threeNum

{

int n1, n2, n3;

};

int main()

{

int n;

struct threeNum num;

FILE *fptr;

if ((fptr = fopen(“C:\\program.bin”,”wb”)) == NULL){

printf(“Error! opening file”);

// Program exits if the file pointer returns NULL.

exit(1);

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

}

for(n = 1; n < 5; ++n)

{

num.n1 = n;

num.n2 = 5n;

num.n3 = 5n + 1;

fwrite(&num, sizeof(struct threeNum), 1, fptr);

}

fclose(fptr);

return 0;

}

 We declare a structure three Num with three numbers - n1, n2 and n3, and

define it in the main function as num. Now, inside the for loop, we store the

value into the file using fwrite.

 The first parameter takes the address of num and the second parameter takes the

size of the structure three Num. Since, we’re only inserting one instance of num,

the third parameter is 1. And, the last parameter *fptr points to the file we’re

storing the data. Finally, we close the file.

Reading from a binary file

 Function fread() also take 4 arguments similar to fwrite() function as above.

fread(address_data,size_data,numbers_data,pointer_to_file);

Program 2.23: Reading from a binary file using fread()

#include <stdio.h>

struct threeNum

{

int n1, n2, n3;

};

int main()

{

int n;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

struct threeNum num;

FILE *fptr;

if ((fptr = fopen(“C:\\program.bin”,”rb”)) == NULL){

printf(“Error! opening file”);

// Program exits if the file pointer returns NULL.

exit(1);

}

for(n = 1; n < 5; ++n)

{

fread(&num, sizeof(struct threeNum), 1, fptr);

printf(“n1: %d\tn2: %d\tn3: %d”, num.n1, num.n2, num.n3);

}

fclose(fptr);

return 0;

}

 This program will start reading the records from the file program.bin in the

reverse order (last to first)

Text Files

 In C, all components are files, each with a different behavior based on the

attached devices. To enable the I/O functions, several standard built-in functions

were created and stored in libraries.

 Some of the high level file I/O functions are given in Table 2.1

Table 2.1 High level file I/O functions

S.No Function Description

1 fopen() opens new or existing file

2 fprintf() write data into the file

3 fscanf() reads data from the file

4 fputc() writes a character into the file

5 fgetc() reads a character from file

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

6 fclose() closes the file

7 fseek() sets the file pointer to given position

8 fputw() writes an integer to file

9 fgetw() reads an integer from file

10 ftell() returns current position

11 rewind() sets the file pointer to the beginning of the file

1. fopen () : It creates a new file for use or opens an existing file for use.

2. fclose (): It closes a file which has been opened for use.

3. fscanf(file pointer, format string, address of the variable)

Example: fscanf(fptr,”%d”, &num);

4. fprintf(console output, “format string”, file pointer);

Example: fprintf(stdout, “%f \n”, f); /*note: stdout refers to screen */

5. getw (): This function returns the integer value from a given file and increment the

file pointer position to the next message.

Syntax: getw (fptr);

Where fptr is a file pointer which takes the integer value from file.

6. putw (): This function is used for writing an integer value to a given file.

Syntax: putw (value,fptr);

Where fptr is a file pointer Value is an integer value which is written to a given file.

Example Program for getw() and putw()

Program 2.24: Write a program to read integer data from the user and write it

into the file using putw() and read the same integer data from the file using getw()

and display it on the output screen.

#include<stdio.h>

#include<conio.h>

void main()

{

FILE *fp;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

int n;

clrscr();

fp=fopen(“c.dat”, “wb+”);

printf(“Enter the integer data”);

scanf(“%d”,&n);

while(n!=0)

{

putw(n,fp);

scanf(“%d”,&n);

}

rewind(fp);

printf(“Reading data from file”);

while((n=getw(fp))!=EOF)

{

printf(“%d\n”,n);

}

fclose(fp);

getch();

}

7. fwrite()

 This function is used for writing an entire block to a given file.

Syntax: fwrite(ptr,size,nst,fptr);

ptr is a pointer ,it points to the array of structure.

Size is the size of the structure

nst is the number of the structure

fptr is a filepointer.

8. fread()

 fread(ptr,size,position,fptr);similar to fwrite

9. fflush(stdin);To clean the input stream

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Program 2.25: program for fwrite():

Write a program to read an employee details and write them into the file at a time

using fwrite().

#include<stdio.h>

#include<conio.h>

void main()

{

struct emp

{

int eno;

char ename[20];

float sal;

}e;

FILE *fp;

fp=fopen(“emp.dat”, “wb”);

clrscr();

printf(“Enter employee number”);

scanf(“&d”,&e.eno);

printf(“Enter employee name”);

fflush(stdin);

scanf(“%s”,e.ename);

printf(“Enter employee salary”);

scanf(“%f”,&e.sal);

fwrite(&e,sizeof(e),1,fp);

printf(“One record stored successfully”);

getch();

}

Operations for Search data in a file

1. fseek()

2. ftell()

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

3. rewind()

fseek() : Getting data using fseek()

 When many records inside a file and need to access a record at a specific

position, you need to loop through all the records before it to get the record. This

will waste a lot of memory and operation time. An easier way to get to the

required data can be achieved using fseek().

Syntax of fseek()

fseek(FILE * stream, long int offset, int whence)

fseek(file pointer, displacement, pointer position);

 The first parameter stream is the pointer to the file. The second parameter is the

position of the record to be found, and the third parameter specifies the location

where the offset starts.

 This function is used for seeking the pointer position in the file at the specified

byte.

Syntax: fseek(file pointer, displacement, pointer position);

file pointer - It is the pointer which points to the file.

displacement -It is positive or negative.

 This is the number of bytes which are skipped backward (if negative) or forward

(if positive) from the current position. This is attached with L because this is a

long integer.

Pointer position: This sets the pointer position in the file.

Value Pointer position Value Pointer position

0 Beginning of file.

1 Current position

2 End of file

Example:

1. fseek(p,10L,0)

 This 0 means pointer position is on beginning of the file, from this statement

pointer position is skipped 10 bytes from the beginning of the file.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

2. fseek(p,5L,1)

 This 1 means current position of the pointer position. From this statement

pointer position is skipped 5 bytes forward from the current position.

3. fseek(p,-5L,1):

 From this statement pointer position is skipped 5 bytes backward from the

current position.

Program 2.26: for fseek()

#include <stdio.h>

struct threeNum

{

int n1, n2, n3;

};

int main()

{

int n;

struct threeNum num;

FILE *fptr;

if ((fptr = fopen(“C:\\program.bin”,”rb”)) == NULL){

printf(“Error! opening file”);

// Program exits if the file pointer returns NULL.

exit(1);

}

// Moves the cursor to the end of the file

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

ftell()

fseek(fptr, sizeof(struct threeNum), SEEK_END);

for(n = 1; n < 5; ++n)

{

fread(&num, sizeof(struct threeNum), 1, fptr);

printf(“n1: %d\tn2: %d\tn3: %d”, num.n1, num.n2, num.n3);

}

fclose(fptr);

return 0;

}

 This function is used to move the file pointer to the beginning of the given file.

This function returns the value of the current pointer position in the file. The

value is count from the beginning of the file.

Syntax: ftell(fptr); fptr is a file pointer.

rewind()

Syntax: rewind(fptr); fptr is a file pointer.

Program 2.27: program for fseek():

Write a program to read last ‘n’ characters of the file using appropriate file

functions(Here we need fseek() and fgetc()).

#include<stdio.h>

#include<conio.h>

void main()

{

FILE *fp;

char ch;

clrscr();

fp=fopen(“file1.c”, “r”);

if(fp==NULL)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

printf(“file cannot be opened”);

else

{

printf(“Enter value of n to read last ‘n’ characters”);

scanf(“%d”,&n);

fseek(fp,-n,2);

while((ch=fgetc(fp))!=EOF)

{

printf(“%c\t”,ch);

}

}

fclose(fp);

getch();

}

 PREPROCESSOR DIRECTIVES

 The C preprocessor is a microprocessor that is used by compiler to transform

your code before compilation. It is called micro preprocessor because it allows

us to add macros.

 Note: A macro is a segment of code which is replaced by the value of macro.

Macro is defined by #define directive.

Example

#define PI 3.14

Here, PI is the macro name which will be replaced by the value 3.14.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 All preprocessor directives starts with hash # symbol. Let's see a list of

preprocessor directives.

 #define: It substitutes a preprocessor using macro.

 #include: It helps to insert a certain header from another file.

 #undef: It undefines a certain preprocessor macro.

 #ifdef: It returns true if a certain macro is defined.

 #ifndef: It returns true if a certain macro is not defined.

 #if, #elif, #else, and #endif: It tests the program using a certain condition;

these directives can be nested too.

 #line: It handles the line numbers on the errors and warnings. It can be used

to change the line number and source files while generating output during

compile time.

 #error and #warning: It can be used for generating errors and warnings.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 #error can be performed to stop compilation.

 #warning is performed to continue compilation with messages in the console

window.

 #region and #endregion: To define the sections of the code to make them

more understandable and readable, we can use the region using expansion

and collapse features.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

	FILE HANDLING
	Why we need file?
	File Operations
	Types of Files
	Text Files (or) ASCII file
	Binary Files
	Opening Modes in Standard I/O
	Reading and writing to a text file
	Writing to a text file
	Reading from a text file
	Reading and writing to a binary file
	Writing to a binary file
	Program 2.22: Writing to a binary file using fwrite()
	Reading from a binary file
	fread(address_data,size_data,numbers_data,pointer_to_file); Program 2.23: Reading from a binary file using fread()
	Text Files
	Table 2.1 High level file I/O functions
	Example Program for getw() and putw()
	7. fwrite()
	8. fread()
	Program 2.25: program for fwrite():
	Operations for Search data in a file
	Example:
	2. fseek(p,5L,1)
	3. fseek(p,-5L,1):
	ftell()
	rewind()
	Program 2.27: program for fseek():

	PREPROCESSOR DIRECTIVES
	Example

