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2.1 Asynchronous execution with synchronous communication 

When all the communication between pairs of processes is by using synchronous send 

and receive primitives, the resulting order is synchronous order. The algorithms run on 

asynchronous systems will not work in synchronous system and vice versa is also true. 

 

Realizable Synchronous Communication (RSC) 

 
 

• An execution can be modeled to give a total order that extends the partial order 

(E, ≺). 

• In an A-execution, the messages can be made to appear instantaneous if there exist a 

linear extension of the execution, such that each send event is immediately followed 

by its corresponding receive event in this linear extension. 
 

 

• In the non-separated linear extension, if the adjacent send event and its corresponding 

receive event are viewed atomically, then that pair of events shares a common past 

and a common future with each other. 
 

Crown 

 
 

The crown is <(s1, r1) (s2, r2)> as we have s1 ≺ r2 and s2 ≺ r1. Cyclic dependencies 

may exist in a crown. The crown criterion states that an A-computation is RSC, i.e., it can be 

realized on a system with synchronous communication, if and only if it contains no crown. 

 
Timestamp criterion for RSC execution 

An execution (E, ≺) is RSC if and only if there exists a mapping from E to T (scalar 

timestamps) such that 

 

 
2.2.1 Hierarchy of ordering paradigms 

 

The orders of executions are: 

• Synchronous order (SYNC) 

• Causal order (CO) 

• FIFO order (FIFO) 

• Non FIFO order (non-FIFO) 

The Execution order have the following results 
 

− For an A-execution, A is RSC if and only if A is an S-execution. 

− RSC ⊂ CO ⊂ FIFO ⊂ A 

− This hierarchy is illustrated in Figure 2.3(a), and example executions of each class are 

shown side-by-side in Figure 2.3(b) 

A-execution can be realized under synchronous communication is called a realizable with 

synchronous communication (RSC). 

Let E be an execution. A crown of size k in E is a sequence <(si, ri), i ∈{0,…, k-1}> of pairs of 

corresponding send and receive events such that: s0 ≺ r1, s1 ≺ r2, sk−2 ≺ rk−1, sk−1 ≺ r0. 

Non-separated linear extension is an extension of (E, ≺) is a linear extension of (E, ≺) such that 

for each pair (s, r) ∈ T, the interval { x∈ E s ≺ x ≺ r } is empty. 

A A-execution (E, ≺) is an RSC execution if and only if there exists a non-separated linear 

extension of the partial order (E, ≺). 
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− The above hierarchy implies that some executions belonging to a class X will not belong 

to any of the classes included in X. The degree of concurrency is most in A and least in 

SYNC. 

− A program using synchronous communication is easiest to develop and verify. 

− A program using non-FIFO communication, resulting in an A execution, is hardest to 

design and verify. 

  

Fig (a) Fig (b) 

 
Fig 2.3: Hierarchy of execution classes 

 

2.2.3 Simulations 

− The events in the RSC execution are scheduled as per some non-separated linear 

extension, and adjacent (s, r) events in this linear extension are executed sequentially 

in the synchronous system. 

− The partial order of the asynchronous execution remains unchanged. 

− If an A-execution is not RSC, then there is no way to schedule the events to make them 

RSC, without actually altering the partial order of the given A-execution. 

− However, the following indirect strategy that does not alter the partial order can be 

used. 

− Each channel Ci,j is modeled by a control process Pi,j that simulates the channel buffer. 

− An asynchronous communication from i to j becomes a synchronous communication 

from i to Pi,j followed by a synchronous communication from Pi,j to j. 

− This enables the decoupling of the sender from the receiver, a feature that is essential 

in asynchronous systems. 

 

Fig 2.4: Modeling channels as processes to simulate an execution using 

asynchronous primitives on synchronous system 

Synchronous programs on asynchronous systems 

− A (valid) S-execution can be trivially realized on an asynchronous system by 

scheduling the messages in the order in which they appear in the S-execution. 

− The partial order of the S-execution remains unchanged but the communication occurs 
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on an asynchronous system that uses asynchronous communication primitives. 

− Once a message send event is scheduled, the middleware layer waits for 

acknowledgment; after the ack is received, the synchronous send primitive completes. 

2.2 SYNCHRONOUS PROGRAM ORDER ON AN ASYNCHRONOUS SYSTEM 

 

Non deterministic programs 

The partial ordering of messages in the distributed systems makes the repeated runs of 

the same program will produce the same partial order, thus preserving deterministic nature. 

But sometimes the distributed systems exhibit non determinism: 

• A receive call can receive a message from any sender who has sent a message, if the 

expected sender is not specified. 

•  Multiple send and receive calls which are enabled at a process can be executed in an 

interchangeable order. 

• If i sends to j, and j sends to i concurrently using blocking synchronous calls, there 

results a deadlock. 

• There is no semantic dependency between the send and the immediately following 

receive at each of the processes. If the receive call at one of the processes can be 

scheduled before the send call, then there is no deadlock. 

2.3.1 Rendezvous 

Rendezvous systems are a form of synchronous communication among an arbitrary 

number of asynchronous processes. All the processes involved meet with each other, i.e., 

communicate synchronously with each other at one time. Two types of rendezvous systems 

are possible: 

• Binary rendezvous: When two processes agree to synchronize. 

• Multi-way rendezvous: When more than two processes agree to synchronize. 

 

Features of binary rendezvous: 

• For the receive command, the sender must be specified. However, multiple recieve 

commands can exist. A type check on the data is implicitly performed. 

• Send and received commands may be individually disabled or enabled. A command is 

disabled if it is guarded and the guard evaluates to false. The guard would likely 

contain an expression on some local variables. 

•  Synchronous communication is implemented by scheduling messages under the 

covers using asynchronous communication. 

• Scheduling involves pairing of matching send and receives commands that are both 

enabled. The communication events for the control messages under the covers do not 

alter the partial order of the execution. 

 

2.3.2 Binary rendezvous algorithm 

If multiple interactions are enabled, a process chooses one of them and tries to 

synchronize with the partner process. The problem reduces to one of scheduling messages 

satisfying the following constraints: 

• Schedule on-line, atomically, and in a distributed manner. 

• Schedule in a deadlock-free manner (i.e., crown-free). 

• Schedule to satisfy the progress property in addition to the safety property. 
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Steps in Bagrodia algorithm 

1. Receive commands are forever enabled from all processes. 

2.  A send command, once enabled, remains enabled until it completes, i.e., it is not 

possible that a send command gets before the send is executed. 

3. To prevent deadlock, process identifiers are used to introduce asymmetry to break 

potential crowns that arise. 

4. Each process attempts to schedule only one send event at any time. 
 

The message (M) types used are: M, ack(M), request(M), and permission(M). Execution 

events in the synchronous execution are only the send of the message M and receive of the 

message M. The send and receive events for the other message types – ack(M), request(M), 

and permission(M) which are control messages. The messages request(M), ack(M), and 

permission(M) use M’s unique tag; the message M is not included in these messages. 
 

 

(message types) 
 

M, ack(M), request(M), permission(M) 
 

(1) Pi wants to execute SEND(M) to a lower priority process Pj: 
 

Pi executes send(M) and blocks until it receives ack(M) from Pj . The send event SEND(M) now 

completes. 

Any M’ message (from a higher priority processes) and request(M’) request for synchronization (from 

a lower priority processes) received during the blocking period are queued. 

(2) Pi wants to execute SEND(M) to a higher priority process Pj: 
 

(2a) Pi seeks permission from Pj by executing send(request(M)). 
 

// to avoid deadlock in which cyclically blocked processes queue // messages. 

(2b) While Pi is waiting for permission, it remains unblocked. 

(i) If a message M’ arrives from a higher priority process Pk, Pi accepts M’ by scheduling a 

RECEIVE(M’) event and then executes send(ack(M’)) to Pk. 

(ii) If a request(M’) arrives from a lower priority process Pk, Pi executes send(permission(M’)) to Pk and 

blocks waiting for the messageM’. WhenM’ arrives, the RECEIVE(M’) event is executed. 

(2c) When the permission(M) arrives, Pi knows partner Pj is synchronized and Pi executes send(M). The 

SEND(M) now completes. 

(3) request(M) arrival at Pi from a lower priority process Pj: 

 

At the time a request(M) is processed by Pi, process Pi executes send(permission(M)) to Pj and blocks 

waiting for the message M. When M arrives, the RECEIVE(M) event is executed and the process 

unblocks. 

(4) Message M arrival at Pi from a higher priority process Pj: 
 

At the time a message M is processed by Pi, process Pi executes RECEIVE(M) (which is assumed to be 

always enabled) and then send(ack(M)) to Pj . 

(5) Processing when Pi is unblocked: 
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When Pi is unblocked, it dequeues the next (if any) message from the queue and processes it as a 

message arrival (as per rules 3 or 4). 

 

 

Fig 2.5: Bagrodia Algorithm 

 

2.3 GROUP COMMUNICATION 

Group communication is done by broadcasting of messages. A message broadcast is 

the sending of a message to all members in the distributed system. The communication may 

be 

• Multicast: A message is sent to a certain subset or a group. 

• Unicasting: A point-to-point message communication. 

The network layer protocol cannot provide the following functionalities: 

▪ Application-specific ordering semantics on the order of delivery of messages. 

▪ Adapting groups to dynamically changing membership. 

▪ Sending multicasts to an arbitrary set of processes at each send event. 

▪ Providing various fault-tolerance semantics. 

▪ The multicast algorithms can be open or closed group. 
 

Differences between closed and open group algorithms: 

 
Closed group algorithms Open group algorithms 

If sender is also one of the receiver in the 
multicast algorithm, then it is closed group 
algorithm. 

If sender is not a part of the communication 

group, then it is open group algorithm. 

They are specific and easy to implement. They are more general, difficult to design and 

expensive. 

It does not support large systems where client 
processes have short life. 

It can support large systems. 

 

2.4 CAUSAL ORDER (CO) 

In the context of group communication, there are two modes of communication: causal 

order and total order. Given a system with FIFO channels, causal order needs to be explicitly 

enforced by a protocol. The following two criteria must be met by a causal 
ordering protocol: 

• Safety: In order to prevent causal order from being violated, a message M that arrives 

at a process may need to be buffered until all system wide messages sent in the causal 

past of the send (M) event to that same destination have already arrived. The arrival of 

a message is transparent to the application process. The delivery event corresponds to the 

receive event in the execution model. 

• Liveness: A message that arrives at a process must eventually be delivered to the 

process. 

2.5.1 The Raynal–Schiper–Toueg algorithm 

• Each message M should carry a log of all other messages sent causally before M’s send 

event, and sent to the same destination dest(M). 

• The Raynal–Schiper–Toueg algorithm canonical algorithm is a representative of 

several algorithms that reduces the size of the local space and message space overhead 

by various techniques. 
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• This log can then be examined to ensure whether it is safe to deliver a message. 

• All algorithms aim to reduce this log overhead, and the space and time overhead of 

maintaining the log information at the processes. 

• To distribute this log information, broadcast and multicast communication is used. 

• The hardware-assisted or network layer protocol assisted multicast cannot efficiently 

provide features: 

➢ Application-specific ordering semantics on the order of delivery of messages. 

➢ Adapting groups to dynamically changing membership. 

➢ Sending multicasts to an arbitrary set of processes at each send event. 

➢ Providing various fault-tolerance semantics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


