Gram Schmidt Orthogonalisation Process

Theorem:

Every finite dimensional inner product space has an orthonormal basis.(Gram Schmidt Orthogonalization Process)

PROBLEMS

Apply Gram-Schmidt process to construct an orthonormal basis for $V_3(R)$ with the standard inner product for the basis (v_1,v_2,v_3) , Where $v_1=(1,0,1)$; $v_2=(1,3,1)$ and $v_3=(3,2,1)$.

Sol: The first vector in the orthogonal basis is

$$w_1 = v_1 = (1,0,1)$$

The formula for the second vector in the orthogonal basis is $W_2 = v_2 - \frac{(v_2, w_1)}{\|w_1\|^2} w_1$

The quantities that we need for this step are

$$(v_2,w_2)=((1,3,1),(1,0,1))$$

=1 + 0 +1 = 2

$$||w_1||^2 = (w_1, w_2) = 1^2 + 0^2 + 1^2 = 2$$

The quantities that we need for this step are

$$(v_2,w_2)=((1,3,1),(1,0,1))$$

$$=1+0+1=2$$

$$||w_1||^2 = (w_1, w_2) = 1^2 + 0^2 + 1^2 = 2$$
.

Therefore the second vector is

$$w_2 = (1,3,1) - \frac{2}{2}(1,0,1)$$

$$=(1,3,1) - (1,0,1) \Rightarrow (0,3,0).$$

The formula for the third (and final) vector in the orthogonal basis is

$$\mathbf{w}_3 = \mathbf{v}_3 - \frac{(v_3, w_1)}{\|\mathbf{w}_1\|^2} \mathbf{w}_1 - \frac{(v_3, w_1)}{\|\mathbf{w}_2\|^2} \mathbf{w}_2$$

The quantities that we need for this steps are

$$||w_2||^2 = (w_2, w_2) = 0^2 + 3^2 + 0^2 = 9.$$

$$(v_3, w_1) = ((3,2,1), (1,0,1)) = 3 + 0 + 1 = 4$$

$$(v_3, w_2) = ((3,2,1), (0,3,0)) = 0 + 6 + 0 = 6$$

Therefore the third vector is

$$W_3 = (3,2,1) - \frac{4}{2}(1,0,1) - \frac{6}{9}(0,3,0)$$

=
$$(3,2,1)$$
-2 $(1,0,1)$ - $\frac{2}{3}(0,3,0)$

$$=(1,0,-1).$$

$$||w_3||^2 = (w_3, w_3) = 1^2 + 0^2 + (-1)^2 = 2$$
.

The orthogonal basis is

$$\{(1,0,1),(0,3,0),(1,0,-1)\}$$

The orthonormal basis is

$$\beta = \{b_1, b_2, b_3\},\$$

Where
$$b_1 = \frac{(w_1)}{\|w_1\|}$$
, $b_2 = \frac{(w_2)}{\|w_2\|}$, $b_3 = \frac{(w_3)}{\|w_3\|}$,

$$||w_1||^2 = 2 \Rightarrow ||w_1|| = \sqrt{2}$$

$$||w_2||^2 = 9 \implies ||w_2|| = 3$$

$$||w_3||^2 = 2 \implies ||w_3|| = \sqrt{2}$$

$$b_1 = \frac{(w_1)}{\|w_1\|} = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$

$$b_2 = \frac{(w_2)}{\|w_2\|} = (0,1,0)$$

$$b_3 = \frac{(w_3)}{\|w_2\|} = \left(\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}}\right)$$

Therefore the orthonormal basis is

$$\beta = \{b_1, b_2, b_3\}$$

$$\beta = \{ \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right), (0,1,0) \left(\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}} \right) \}.$$