
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

Google AppEngine Tutorial

Introduction to Google AppEngine with Java

In this tutorial, you will practice working with Google AppEngine, specifically in

Java. The contents of this tutorial are based on the official Google Tutorials. This

tutorial assumes you already have Java 8 installed, and Eclipse IDE for Java

Developers, version 4.5 or higher.

Setup

First, create a new Cloud Platform Console project or retrieve the project ID of an

existing project from the Google Cloud Platform Console. To do this, visit the

projects page and login. I used my gmail account since my utexas account didn't seem

to have the right permissions.

Manage your AppEngine applications using Google Cloud SDK. Cloud SDK includes

a local development server as well as the gcloud command-line tooling for deploying

and managing your apps. So our next step is to install the Google Cloud SDK and

initialize the gcloud tool. Download and install the Google Cloud SDK (be sure to

follow steps one through six on the linked page.)

Run the following command to install the gcloud component that includes the App

Engine extension for Java:
gcloud components install app-engine-java

And authorize your user account:
gcloud auth application-default login

Development Environment Configuration

Run eclipse. To download and install the Cloud Tools for Eclipse plugin,

select Help > Eclipse Marketplace... and search for Google Cloud. After installation,

restart Eclipse when prompted to do so.

Create A Project

In Eclipse, select the File menu > New > Google App Engine Standard Java Project.

(If you don't see this menu option, select Window menu > Perspective > Reset

Perspective... click OK, then try the File menu again.)

https://cloud.google.com/appengine/docs/standard/java/getting-started/
https://cloud.google.com/sdk/docs/

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

Alternatively, click the Google Cloud Platform toolbar button , select Create New

Project > Google App Engine Standard Java Project

The "New App Engine Standard Project" wizard opens. For Project name, enter a

name for your project, such as Guestbook for the project described in the Getting

Started Guide. For "Package", enter an appropriate package name, such as guestbook.

Then click "Next", check the box that says "App Engine API", and click "Finish".

The wizard creates a directory structure for the project, including a src/ directory for

Java source files, and a webapp/ directory for compiled classes and other files for the

application, libraries, configuration files, static files such as images and CSS, and

other data files. The wizard also creates a servlet source file and two configuration
files. The directory structure looks like this:

The Servlet Class

App Engine Java applications use the Java Servlet API to interact with the web server.

An HTTP servlet is an application class that can process and respond to web requests.

This class extends either the javax.servlet.GenericServlet class or the

javax.servlet.http.HttpServlet class.

Our guestbook project begins with one servlet class, a simple servlet that displays a

message.

In the directory src/main/java, make a file named GuestbookServlet.java with the

following contents:

The web.xml File

When the web server receives a request, it determines which servlet class to call using

a configuration file known as the "web application deployment descriptor." This file is

named web.xml, and resides in the webapp/WEB-INF/ directory. WEB-INF/ and

web.xml are part of the servlet specification.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

Modify the web.xml file so that it looks like this. You will need to add lines 6 through

20 that you see below.

The web.xml file declares a servlet named guestbook, and maps it to the URL path

/guestbook. It also indicates that whenever the user fetches a URL path that is not

already mapped to a servlet, the server should check for a file named index.html in

that directory and serve it if found.

In the file index.html, replace the line:
 <td>The servlet</td>

With the line:

 <td>The servlet</td>

Running the Project

Make sure the project "Guestbook" is selected, and then choose Run As > App

Engine. Visit the server's URL in your browser. The server runs using port 8080 by

default:
http://localhost:8080/guestbook/

The server calls the servlet, and displays the message in the browser.

The appengine-web.xml Files

App Engine needs an additional configuration file to figure out how to deploy and run

the application. This file is appengine-web.xml, and resides in WEB-INF/ also. It

includes the registered ID of your application (Eclipse creates this with an empty ID

for you to fill in later), the version number of your application, and lists of files that

should be treated as static files (like images and CSS) and resource files (such as JSPs

and other application data.)

appengine-web.xml is specific to App Engine, and is not part of the servlet standard.

See Configuring an App for more information about this file.

Using the Users Service

http://localhost:8888/guestbook/
https://cloud.google.com/appengine/docs/standard/java/config/appref

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

Google App Engine provides several useful services based on Google infrastructure,

accessible by applications using libraries included with the SDK. One such service is

the Users service, which lets your application integrate with Google user accounts.

With the Users service, your users can use the Google accounts they already have to

sign in to your application.

Let's use the Users service to personalize this application's greeting.

Edit src/guestbook/GuestbookServlet.java to resemble the following:

If your development server is running, when you save your changes to this file,

Eclipse compiles the new code automatically, then attempts to insert the new code

into the already running server. Changes to classes, JSPs, static files and appengine-

web.xml are reflected immediately in the running server without restarting. If you

change web.xml or other configuration files, you must stop and restart the server to

see the changes.
Test the application by visiting the servlet URL in your browser:

http://localhost:8080/guestbook

Instead of displaying the message, the server now prompts you for an email address.

Enter any email address (e.g., jane@example.com), then click "Log In". The app

displays a message, this time containing the email address you entered.

The new code for the GuestbookServlet class uses the Users API to check if the user

is signed in with a Google Account. If not, the user is redirected to the Google

Accounts sign-in screen. userService.createLoginURL(...) returns the URL of the

sign-in screen. The sign-in facility knows to redirect the user back to the app by the

URL passed to createLoginURL(...), which in this case is the URL of the current

page.

The development server knows how to simulate the Google Accounts sign-in facility.

When run on your local machine, the redirect goes to the page where you can enter

any email address to simulate an account sign-in. When run on App Engine, the

redirect goes to the actual Google Accounts screen.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

You are now signed in to your test application. If you reload the page, the message

will display again.

To allow the user to sign out, provide a link to the sign-out screen, generated by the

method createLogoutURL(). Note that a sign-out link will sign the user out of all

Google services. This is shown in the next section.

Using JSPs

While we could output the HTML for our user interface directly from the Java servlet

code, this would be difficult to maintain as the HTML gets complicated. It's better to

use a template system, with the user interface designed and implemented in separate

files with placeholders and logic to insert data provided by the application. There are

many template systems available for Java, any of which would work with App

Engine. For this tutorial, we'll use JSPs to implement the user interface for the guest

book. JSPs are part of the servlet standard. App Engine compiles JSP files in the

application's WAR automatically as one large JAR file, then maps the URL paths

accordingly.

Our guestbook app writes strings to an output stream, but this could also be written as

a JSP. Let's begin by porting the latest version of the example to a JSP.

In the directory webapp/, create a file named guestbook.jsp as follows:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<%@ page import="java.util.List" %>

<%@ page import="com.google.appengine.api.users.User" %>

<%@ page import="com.google.appengine.api.users.UserService" %>

<%@ page import="com.google.appengine.api.users.UserServiceFactory" %>

<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<html>

 <body>

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

<%

 UserService userService = UserServiceFactory.getUserService();

 User user = userService.getCurrentUser();

 if (user != null) {

 pageContext.setAttribute("user", user);

%>

<p>Hello, ${fn:escapeXml(user.nickname)}! (You can

<a href="<%= userService.createLogoutURL(request.getRequestURI()) %>">sign out.)</p>

<%

 } else {

%>

<p>Hello!

<a href="<%= userService.createLoginURL(request.getRequestURI()) %>">Sign in

to include your name with greetings you post.</p>

<%

 }

%>

 </body>

</html>

By default, any file in webapp/ or a subdirectory other than WEB-INF/ and

META_INF/ which has a name ending in .jsp is automatically mapped to a URL path.

The URL path is the path to the .jsp file, including the filename. This JSP will be

mapped automatically to the URL /guestbook.jsp.

For the guestbook app, we want this to be the application's homepage, displayed when

someone accesses the URL /. An easy way to do this is to declare in web.xml that

guestbook.jsp is the "welcome" servlet for that path.

Edit webapp/WEB-INF/web.xml and replace the current <welcome-file> element in

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

the <welcome-file-list>. Be sure to remove index.html from the list, as static files take

precedence over JSP and servlets.

Stop and then restart the development server. Visit http://localhost:8080/.

The app displays the contents of guestbook.jsp, including the user nickname if the

user is signed in. We want to HTML-escape any text which users provide in case that

text contains HTML. To do this for the user nickname, we use the JSP's pageContext

so that java code can "see" the string, then call the escapeXML function we imported

via the taglib element.

When you upload your application to App Engine, the SDK compiles all JSPs into

one JAR file, and that is what gets uploaded.

The Guestbook Form

Our guest book application will need a web form so the user can post a new greeting,

and a way to process that form. The HTML of the form will go into the JSP. The

destination of the form will be a new URL, /sign, to be handled by a new servlet class,

SignGuestbookServlet. SignGuestbookServlet will process the form, then redirect the

user's browser back to /guestbook.jsp. For now, the new servlet will just write the

posted message to the log.

Edit guestbook.jsp and put the following lines just above the closing </body> tag:

...

 <form action="/sign" method="post">
 <div><textarea name="content" rows="3"
cols="60"></textarea></div>
 <div><input type="submit" value="Post Greeting" ></div>
 </form>

 </body>
</html>

Create a new class named SignGuestbookServlet in the package guestbook. (Non-

eclipse users, create the file SignGuestbookServlet.java in the directory

src/guestbook/.) Give the source file the following contents:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

package guestbook;

import java.io.IOException;

import java.util.logging.Logger;

import javax.servlet.http.*;

import com.google.appengine.api.users.User;

import com.google.appengine.api.users.UserService;

import com.google.appengine.api.users.UserServiceFactory;

public class SignGuestbookServlet extends HttpServlet {

 private static final Logger log = Logger.getLogger(SignGuestbookServlet.class.getNam
e());

 public void doPost(HttpServletRequest req, HttpServletResponse resp)

 throws IOException {

 UserService userService = UserServiceFactory.getUserService();

 User user = userService.getCurrentUser();

 String content = req.getParameter("content");

 if (content == null) {

 content = "(No greeting)";

 }

 if (user != null) {

 log.info("Greeting posted by user " + user.getNickname() + ": " + content);

 } else {

 log.info("Greeting posted anonymously: " + content);

 }

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

 resp.sendRedirect("/guestbook.jsp");

 }

}

Edit WEB-INF/web.xml and add the following lines to declare the

SignGuestbookServlet servlet and map it to the /sign URL:

 <servlet>

 <servlet-name>sign</servlet-name>

 <servlet-
class>guestbook.SignGuestbookServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>sign</servlet-name>

 <url-pattern>/sign</url-pattern>

 </servlet-mapping>

 ...

</web-app>

This new servlet uses the java.util.logging.Logger class to write messages to the log.

You can control the behavior of this class using a logging.properties file in

Java\jdk<version>\jre\lib, and a system property set in the app's appengine-web.xml

file. In Eclipse, your app was created with a default version of this file in your app's

src/ and the appropriate system property.

The servlet logs messages using the INFO log level (using log.info()). The default log

level is WARNING, which suppresses INFO messages from the output. To change the

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

log level for all classes in the guestbook package, edit the logging.properties file and

add an entry for guestbook.level, as follows:

.level = WARNING

guestbook.level = INFO

Tip: When your app logs messages using the java.util.logging.Logger API while

running on App Engine, App Engine records the messages and makes them available

for browsing in the Admin Console, and available for downloading using

the AppCfg tool. The Admin Console lets you browse messages by log level.

Rebuild and restart, then test http://localhost:8080/. The form displays. Enter some

text in the form, and submit. The browser sends the form to the app, then redirects

back to the empty form. The greeting data you entered is logged to the console by the

server.

Using the Datastore

Storing data in a scalable web application can be tricky. A user could be interacting

with any of dozens of web servers at a given time, and the user's next request could go

to a different web server than the previous request. All web servers need to be

interacting with data that is also spread out across dozens of machines, possibly in

different locations around the world.

With Google App Engine, you don't have to worry about any of that. App Engine's

infrastructure takes care of all the distribution, replication and load balancing of data

behind a simple API - and you get a powerful query engine and transactions as well.

The Datastore is one of several App Engine services offering a choice of standards-

based or low-level APIs. The standards-based APIs decouple your application from

the underlying App Engine services, making it easier to port your application to other

hosting environments and other database technologies, if you ever need to. The low-

level APIs expose the service's capabilities directly; you can use them as a base on

which to implement new adapter interfaces, or just use them directly in your

application.

App Engine includes support for two different API standards for the Datastore: Java

Data Objects (JDO) and the Java Persistence API (JPA). These interfaces are provided

by DataNucleus Access Platform, an open-source implementation of several Java

persistence standards, with an adapter for the App Engine Datastore.

https://cloud.google.com/appengine/docs/standard/java/tools/uploadinganapp

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

For clarity getting started, we'll use the low-level API to retrieve and post messages

left by users.

Updating Our Servlet to Store Data

Here is an updated version of src/SignGuestbookServlet.java that stores greetings in

the Datastore. We will discuss the changes made here below.

package guestbook;

import com.google.appengine.api.datastore.DatastoreService;

import com.google.appengine.api.datastore.DatastoreServiceFactory;

import com.google.appengine.api.datastore.Entity;

import com.google.appengine.api.datastore.Key;

import com.google.appengine.api.datastore.KeyFactory;

import com.google.appengine.api.users.User;

import com.google.appengine.api.users.UserService;

import com.google.appengine.api.users.UserServiceFactory;

import java.io.IOException;

import java.util.Date;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class SignGuestbookServlet extends HttpServlet {

 public void doPost(HttpServletRequest req, HttpServletResponse resp)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

 throws IOException {

 UserService userService = UserServiceFactory.getUserService();

 User user = userService.getCurrentUser();

 // We have one entity group per Guestbook with all Greetings residing

 // in the same entity group as the Guestbook to which they belong.

 // This lets us run a transactional ancestor query to retrieve all

 // Greetings for a given Guestbook. However, the write rate to each

 // Guestbook should be limited to ~1/second.

 String guestbookName = req.getParameter("guestbookName");

 Key guestbookKey = KeyFactory.createKey("Guestbook", guestbookName);

 String content = req.getParameter("content");

 Date date = new Date();

 Entity greeting = new Entity("Greeting", guestbookKey);

 greeting.setProperty("user", user);

 greeting.setProperty("date", date);

 greeting.setProperty("content", content);

 DatastoreService datastore = DatastoreServiceFactory.getDatastoreService();

 datastore.put(greeting);

resp.sendRedirect("/guestbook.jsp?guestbookName=" + guestbookName);

 }

}

Storing the Submitted Greetings

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

The low-level Datastore API for Java provides a schema-less interface for creating

and storing entities. The low-level API does not require entities of the same kind to

have the same properties, nor for a given property to have the same type for different

entities. The following code snippet constructs the Greeting entity in the same entity

group as the guestbook to which it belongs:

Entity greeting = new Entity("Greeting", guestbookKey);

 greeting.setProperty("user", user);

 greeting.setProperty("date", date);

 greeting.setProperty("content", content);

In our example, each Greeting as the posted content, and also stores the user

information about who posted, and the date on which the post was submitted. When

initializing the entity, we supply the entity name, Greeting, as well as a guestbookKey

argument that sets the parent of the entity we are storing. Objects in the Datastore that

share a common ancestor belong to the same entity group.

After we construct the entity, we instantiate the Datastore service, and put the entity in

the Datastore:

 DatastoreService datastore =

 DatastoreServiceFactory.getDatastoreService();

 datastore.put(greeting);

Updating the JSP

We also need to modify the JSP we wrote earlier to display Greetings from the

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

Datastore, and also include a form for submitting Greetings. Here is our updated

guestbook.jsp:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<%@ page import="java.util.List" %>

<%@ page import="com.google.appengine.api.users.User" %>

<%@ page import="com.google.appengine.api.users.UserService" %>

<%@ page import="com.google.appengine.api.users.UserServiceFactory" %>

<%@ page import="com.google.appengine.api.datastore.DatastoreServiceFactory" %>

<%@ page import="com.google.appengine.api.datastore.DatastoreService" %>

<%@ page import="com.google.appengine.api.datastore.Query" %>

<%@ page import="com.google.appengine.api.datastore.Entity" %>

<%@ page import="com.google.appengine.api.datastore.FetchOptions" %>

<%@ page import="com.google.appengine.api.datastore.Key" %>

<%@ page import="com.google.appengine.api.datastore.KeyFactory" %>

<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<html>

 <head>

 </head>

 <body>

<%

 String guestbookName = request.getParameter("guestbookName");

 if (guestbookName == null) {

 guestbookName = "default";

 }

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

 pageContext.setAttribute("guestbookName", guestbookName);

 UserService userService = UserServiceFactory.getUserService();

 User user = userService.getCurrentUser();

 if (user != null) {

 pageContext.setAttribute("user", user);

%>

<p>Hello, ${fn:escapeXml(user.nickname)}! (You can

<a href="<%= userService.createLogoutURL(request.getRequestURI()) %>">sign
out.)</p>

<%

 } else {

%>

<p>Hello!

<a href="<%= userService.createLoginURL(request.getRequestURI()) %>">Sign in

to include your name with greetings you post.</p>

<%

 }

%>

<%

 DatastoreService datastore = DatastoreServiceFactory.getDatastoreService();

 Key guestbookKey = KeyFactory.createKey("Guestbook", guestbookName);

 // Run an ancestor query to ensure we see the most up-to-date

 // view of the Greetings belonging to the selected Guestbook.

 Query query = new Query("Greeting", guestbookKey).addSort("date", Query.SortDirect
ion.DESCENDING);

 List<Entity> greetings = datastore.prepare(query).asList(FetchOptions.Builder.withLimi

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

t(5));

 if (greetings.isEmpty()) {

 %>

 <p>Guestbook '${fn:escapeXml(guestbookName)}' has no messages.</p>

 <%

 } else {

 %>

 <p>Messages in Guestbook '${fn:escapeXml(guestbookName)}'.</p>

 <%

 for (Entity greeting : greetings) {

 pageContext.setAttribute("greeting_content",

 greeting.getProperty("content"));

 if (greeting.getProperty("user") == null) {

 %>

 <p>An anonymous person wrote:</p>

 <%

 } else {

 pageContext.setAttribute("greeting_user",

 greeting.getProperty("user"));

 %>

 <p>${fn:escapeXml(greeting_user.nickname)} wrote:</p>

 <%

 }

 %>

 <blockquote>${fn:escapeXml(greeting_content)}</blockquote>

 <%

 }

 }

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

%>

 <form action="/sign" method="post">

 <div><textarea name="content" rows="3" cols="60"></textarea></div>

 <div><input type="submit" value="Post Greeting" /></div>

 <input type="hidden" name="guestbookName" value="${fn:escapeXml(guestbookNam
e)}"/>

 </form>

 </body>

</html>

Warning! Whenever you display user-supplied text in HTML, you must escape the

string using the fn:escapeXml JSTL function, or a similar escaping mechanism. If you

do not correctly and consistently escape user-supplied data, the user could supply a

malicious script as text input, causing harm to later visitors.

Retrieving the Stored Greetings

The low-level Java API provides a Query class for constructing queries and a

PreparedQuery class for fetching and returning the entities that match the query from

the Datastore. The code that fetches the data is here:

 Query query = new Query("Greeting", guestbookKey).addSort("date", Query.SortDirect
ion.DESCENDING);

 List<Entity> greetings = datastore.prepare(query).asList(FetchOptions.Builder.withLimi
t(5));

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

This code creates a new query on the Greeting entity, and sets the guestbookKey as

the required parent entity for all entities that will be returned. We also sort on the date

property, returning the newest Greeting first.

After you construct the query, it is prepared and returned as a list of Entity objects.

For a description of the Query and PreparedQuery interfaces, see the Datastore

reference.

Visit http://localhost:8080/.

Using Static Files

There are many cases where you want to serve static files directly to the web browser.

Images, CSS stylesheets, JavaScript code, movies and Flash animations are all

typically served directly to the browser. For efficiency, App Engine serves static files

from separate servers than those that invoke servlets.

By default, App Engine makes all files in the WAR available as static files except

JSPs and files in WEB-INF/. Any request for a URL whose path matches a static file

serves the file directly to the browser - even if the path also matches a servlet or filter

mapping. You can configure which files App Engine treats as static files using the

appengine-web.xml file.

Let's spruce up our guestbook's appearance with a CSS stylesheet. For this example,

we will not change the configuration for static files. See App Configuration for more

information on configuring static files and resource files.

In the directory webapp/, create a directory named stylesheets/. In this directory,

create a file named main.css with the following contents:

 body {

 font-family: Verdana, Helvetica, sans-serif;

 background-color: #FFFFCC;

}

https://cloud.google.com/appengine/docs/standard/java/datastore/
https://cloud.google.com/appengine/docs/standard/java/datastore/
https://cloud.google.com/appengine/docs/standard/java/datastore/

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

Edit webapp/guestbook.jsp and insert the following lines just after the <html> line at

the top:

<html>
 <head>
 <link type="text/css" rel="stylesheet"
href="/stylesheets/main.css" />
 </head>

 <body>
 ...
 </body>
</html>

Visit http://localhost:8080/. The new version uses the stylesheet.

Creating Index File
An index contains a list of properties of an entity type with corresponding order for

each property, either ascending or descending. Cloud Datastore has already predefined

an index for each property of an entity kind. Therefore, we do not need to define

another index which only contains single property. For our guestbook, guestbook.jsp

only requires Greetings to be sorted by a single property (i.e., date) which does not

require us to add an index.

Indexes are defined in index configuration file datastore-indexes.xml.

Now we are going to sort the greetings by date and user. Create datastore-indexes.xml
in webapp/WEB-INF/ and paste this code inside the file:

<?xml version="1.0" encoding="utf-8"?>
<datastore-indexes autoGenerate="false">
 <datastore-index kind="Greeting" ancestor="true" source="manual">
 <property name="user" direction="desc" />
 <property name="date" direction="desc" />
 </datastore-index>
</datastore-indexes>

Update the query in guestbook.jsp with:

...

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

Query query = new Query("Greeting", guestbookKey).addSort("user",
Query.SortDirection.DESCENDING).addSort("date", Query.SortDirection.DESCENDING);
...

Now visit http://localhost:8080/. You will see that the greetings are sorted by date and

user.

Uploading Your Application

You create and manage App Engine web applications from the App Engine

Administration Console, at the following URL:
https://appengine.google.com

Sign into App Engine using your Google account. If you do not have a Google

account, create one.

To create a new application, click the "Create an Application" button. Follow the

instructions to register an application ID, a name unique to this application.

For this tutorial, you should probably elect to use the free appspot.com domain name,

and so the full URL for the application will be http://your_app_id.appspot.com/.

For Authentication Options (Advanced), the default option, "Open to all Google Accounts

users", is the simplest choice for this tutorial. If you choose "Restricted to the following Google

Apps domain", then your domain administrator must add your new app as a service on that

domain. If you choose the Google Apps domain authentication option, then failure to add your

app to your Google Apps domain will result in an HTTP 500 where the stack trace shows the

error "Unexpected exception from servlet: java.lang.IllegalArgumentException: The requested

URL was not allowed: /guestbook.jsp". If you see this error, add the app to your domain.

See Configuring Google Apps to Authenticate on Appspot for instructions.

To upload your application from Eclipse, right click on Guestbook, and then select "Deploy to

App Engine".

If prompted, follow the instructions to provide the Application ID from the App Engine

Console that you would like to use for this app, your Google account username (your email

address), and your password. Then click the Deploy button. Eclipse will automatically upload the

contents of the webapp/ directory.

You can now see your application running on App Engine. If you set up a free

appspot.com domain name, the URL for your website begins with your application

ID:

https://appengine.google.com/
https://cloud.google.com/appengine/docs/standard/python/oauth/#AppspotDomainAuth
https://appengine.google.com/
https://appengine.google.com/

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS335 CLOUD COMPUTING

http://your_app_id.appspot.com/

What to Submit

All you need to submit is the URL for your final app. It will most likely be

http://***.appspot.com/.

