
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

2. 4 TYPE CHECKING

Type checking is the Activity of ensuring that the operands of an operator are of compatible

types. Subprograms are also operators and parameters of subprograms are operands. A type is

compatible if it is legal for the operator or it can be converted to a legal type. The automatic type

conversion is called coercion.

E.g. In addition of int variable with a float variable in Java int variable is coerced into float

and floating point addition is done

 If type binding is static then all type checking can be done statically by compiler.

 Dynamic type binding requires dynamic type checking at run time, e.g. Javascript and PHP

 It is better to detect errors at compile time than at run time because the earlier correction is

usually less costly

 However, static checking reduces flexibility

 If a memory cell stores values of different types (Ada variant records, Fortran Equivalance,

C and C++ unions) then type checking must be done dynamically at run time.

 So, even though all variables are statically bound to types in languages such as C++, not

all type errors can be detected by static type checking.

Strong typing

A Program Language is a strongly typed language if – each name has a single type, and – type is

known at compile-time.

That is, all types are statically bound.

A better definition:

A PL is strongly typed if type errors are always detected (compile time or run time).

It allows functions for which parameters are not type checked.

Examples:

• FORTRAN77 is not strongly typed because

– Relationship between actual and formal parameters are not type checked.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

- EQUIVALANCE can be declared between different typed names.

• PASCAL is nearly strongly typed

– except variant records because they allow omission of the tag field

• Modula-2 is not strongly typed because of variant records.

• Ada is nearly strongly typed

– Variant records are handled better than PASCAL and Modula-2

• C, ANSI C, C++ are not strongly typed

– allow functions for which parameters are not type checked.

Coercion weakens the value of strong typing

Example:

In Java the value of an integer operand is coerced to floating point and a floating operation

takes place

• Assume that a and b are int variables. User intended to type a+b but mistakenly typed a + d where

d is a float value. Then the error would not be detected since a would be coerced into float.

Type compatibility

The most important result of two variables being compatible types is that either one can have its

value assigned to the other

• Two methods for checking type compatibility:

 Name Type Compatibility

 Structure Type Compatibility

Name Type Compatibility:

Name Type Compatibility:

– Two variables have compatible types only if they are in either the same declaration or in

declarations that use the same type name.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

• Adv: Easy to implement

• Disadv: highly restrictive

Under a strict interpretation a variable whose type is a subrange of the integers would not be

compatible with an integer type variable

Example:

type indexType = 1..10; {subrange type}

var count: integer;

index: indexType;

• The variables count and index are not name type compatible, and cannot be assigned to each

other

• Another problem arises when a structured type is passed among subprograms through parameters

• Such a type must be defined once globally

• A subprogram cannot state the type of such formal parameters in local terms (e.g. In Pascal)

Structure Type Compatibility:

• Two variables have compatible types if their types have identical structure.

• Disadv: Difficult to implement

• Adv: more flexible

• The variables count and index in the previous example, are structure type compatible.

• Under name type compatibility only the two type names must be compared

• Under structure compatibility entire structures of the two types must be compared

• For structures that refer to its own type (e.g. linked lists) this comparison is difficult

• Also it is difficult to compare two structures, because

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

– They may have different field names

– There may be arrays with different ranges

– There may be enumeration types

• It also disallows differentiating between types with the same structure

type celsius = float;

fahrenheit = float;

• They are compatible according to structure type compatibility but they may be mixed

 Most PL’s use a combination of these methods.

 C uses structural equivalence for all types except structures.

 C++ uses name equivalence

Type compatibility (Ada)

 Ada uses name compatibility

 But also provides two type constructs

– Subtypes

– Derived types

• Derived types : a new type based on some previously defined type with which it is incompatible.

They inherit all the properties of the parent type

• type celsius is new float

• type fahrenheit is new float

• Thee two types are incompatible, although their structures are identical

• They are also incompatible with any other floating point Type

• Subtype: possibly range constrained version of an existing type. A subtype is compatible with

parent type

• Subtype small_type is Integer range 0..99;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

• Variales of small_type are compatible with integer variables

For unconstrained array types structure type compatibility is used

• Type vector is array (Integer range<>) of integer

• Vector 1: vector(1..10)

• Vector 2:vector(11..20)

• These two objects are compatible even though they have different names and different subscript

ranges

• Because for objects of unconstrained array types structure compatibility is used

• Both types are of type integer, and they both have then elements, therefore they are compatible

• For constrained anonymous arrays

A: array(1..10) of integer;

B: array (1..10) of integer

A and B are incompatible

C,D: array(1..10) of integer

C and D are incompatible

Type list_10 is array(1..10) of integer

C,D:list_10;

C and D are compatible

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

Type compatibility in C

• C uses structure type compatibility for all types except structures and unions

• Every struct and union declaration creates a new type which is not compatible with any other

type

• Note that typedef does not introduce any new type but it defines a new name

• C++ uses name equivalence

2.5 SCOPE

Scope of a variable is the range of statements in which the variable is visible. A variable is

visible in a statement if it can be referenced in that statement.

• The scope rules of a language determine how references to names are associated with variables

Static Scope :

Scope of variables can be determined statically

– by looking at the program

– prior to execution

• First defined in ALGOL 60.

• Based on program text

• To connect a name reference to a variable, you (or the compiler) must find the declaration

Search process:

– search declarations,

•first locally,

•then in increasingly larger enclosing scopes,

•until one is found for the given name

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

In all static-scoped languages (except C), procedures are nested inside the main program.

• Some languages also allow nested subprograms

– Ada, Javascript, PHP - do

– C based languages – do not

• In this case all procedures and the main unit create their scopes.

Enclosing static scopes (to a specific scope) are called its static ancestors;

• The nearest static ancestor is called a static parent

main is the static parent of p2 and p1 p2 P2 is the static parent of P1

Procedure Big is

x : integer

procedure sub1 is

begin – of

sub1

.... x

end – of sub1

procedure sub2 is

x: integer;

begin – of

sub2

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

....

end – of sub2

begin – of big

...

end – of big

The reference to variable x in sub1 is to the x declared in procedure Big

x in Big is hidded from sub2 because there is another x in sub2

In some languages that use static scoping, regardless of whether nested subprograms are

allowed, some variable declarations can be hidden from some other code segments

e.g. In C++

void sub1() {

int count;

...

while (...) {

int count;

...

}

...

}

• The reference to count in while loop is local

• Count of sub is hidden from the code inside the while loop

Variables can be hidden from a unit by having a "closer" variable with the same name

• C++ and Ada allow access to these "hidden" variables

– In Ada: unit.name

– In C++: class_name::name

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

Blocks

Some languages allow new static scopes to be defined without a name.

• It allows a section of code its own local variables whose scope is minimized.

• Such a section of code is called a block

• The variables are typically stack dynamic so they have their storage allocated when the section

is entered and deallocated when the section is exited

• Blocks are first introduced in Algol 60

In Ada,

...

declare TEMP: integer;

begin

TEMP := FIRST;

FISRT := SECOND; Block

SECOND := TEMP;

end;

...

C and C++ allow blocks.

int first, second;

...

first = 3; second = 5;

{ int temp;

temp = first;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

first = second;

second = temp;

}

...

temp is udefined here.

 C++ allows variable definitions to appear anywhere in functions. The scope is from the

definition statement to the end of the function

 In C, all data declarations (except the ones for blocks) must appear at the beginning of the

function

 for statements in C++,Java and C# allow variable definitions in their initialization

expression. The scope is restricted to the for construct

Dynamic scope

APL, SNOBOL4, early dialects of LISP use dynamic scoping.

• COMMON LISP and Perl also allows dynamic scope but also uses static scoping

• In dynamic scoping

– scope is based on the calling sequence of subprograms

– not on the spatial relationships

– scope is determined at run-time.

When the search of a local declaration fails, the declarations of the dynamic parent is

searched

• Dynamic parent is the calling procedure

Procedure Big is

x : integer

procedure sub1 is

begin – of sub1

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

.... x

end – of sub1

procedure sub2 is

x: integer;

begin – of sub2

....

end – of sub2

begin – of big

...

end – of big

Big calls sub2 sub1 calls sub1

Dynamic parent of sub1 is sub2 sub2 is Big

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

Referencing environments

The referencing environment of a statement is the collection of all names that are visible

in the statement

• In a static-scoped language, it is the local variables plus all of the visible variables in all of the

enclosing scopes

• A subprogram is active if its execution has begun but has not yet terminated

• In a dynamic-scoped language, the referencing environment is the local variables plus all visible

variables in all active subprograms

