ANALYSIS OF INDETERMINATE PIN-JOINTED FRAMES BY FLEXIBILITY METHOD.

NUMERICAL PROBLEMS ON PIN-JOINTED FRAMES;

PROBLEM NO:01

Analysis the truss loaded as shown in fig, by using Matrix Flexibility method.And find the member forces. A and E are the same for all members.

Solution:

- Static indeterminacy:

Degree of internal indeterminacy; $I=m-(2 j-3)=5-(2 \times 4-3)=0$
Degree of external indeterminacy; $\mathrm{E}=\mathrm{r}-\mathrm{R}=4-3=1$
The structure is externally indeterminate to one degree.Treating support A as redundant,the primary structure is shown in fig,

To get the B matrix :

The B matrix would be in 2 parts, B_{X} and B_{W}. To get the B_{X} matrix let us apply a unit force $\left(\mathrm{F}_{\mathrm{X}}=1\right)$ at D as shown and get the member forces by method of joints.

Reactions: $\quad \mathrm{HB}=1$

Equating moments about C to zero,

$$
\mathrm{VB} \times 3=1 \times 5 ; \mathrm{VB}=1.667
$$

Hence,

$$
\mathrm{VC}=1.667
$$

At joint $\mathrm{A}, \quad \mathrm{FAB}=\mathrm{FAD}=0$

At joint $\mathrm{B}, \quad \mathrm{FBA}=\mathrm{VB}=1.667$ (tension)

At joint $C, \quad F C D \sin \theta=V C=1.667$

$$
\begin{aligned}
& \mathrm{FCD}=1.667 / \sin \theta=1.944(\mathrm{comp}) \\
& \mathrm{FBC}=\mathrm{FCD} \cos \theta=1.00(\text { tallies })
\end{aligned}
$$

Thus,

$$
\mathrm{B}_{\mathrm{X}}=\left[\begin{array}{lllll}
0 & -1.944 & 1.00 & 0 & 1.667
\end{array}\right]^{\mathrm{T}}
$$

B_{W} is obtained by applying a unit force at the location of the redundant F_{X}
Equating to zero,moments about B,

$$
V C \times 3=1 \times 3 ; V C=1
$$

From

$$
\Sigma \mathrm{V}=0 ; \mathrm{VB}=2
$$

At joint $\mathrm{A}, \quad \mathrm{FCD} \sin \theta=1 ; \mathrm{FAD}=1.667(\mathrm{comp})$

$$
\mathrm{FAB}=\mathrm{FAD} \cos \theta ; \mathrm{FAB}=0.60 \text { (tension) }
$$

At joint $\mathrm{B}, \quad \mathrm{FAB}=\mathrm{FBC}=0.60$ (tension)

$$
\mathrm{FBD}=2 \text { (tension) }
$$

At joint $\mathrm{C}, \quad \mathrm{FCD} \sin \theta=1 ; \mathrm{FCD}=1.667(\mathrm{comp})$

$$
\mathrm{FBC}=\mathrm{FCD} \cos \theta=0.60 \text { (tallies) }
$$

Hence

$$
\mathrm{B}_{\mathrm{W}}=\left[\begin{array}{lllll}
-1.166 & -1.166 & 0.60 & 0.60 & 2.00
\end{array}\right]^{\mathrm{T}}
$$

$$
=\left[\begin{array}{rr}
0 & -1.166 \\
-1.944 & -1.166 \\
1.00 & 0.60 \\
0 & 0.60 \\
1.667 & 2.00
\end{array}\right]
$$

$$
\mathbf{F}_{\mathbf{X}}=\mathbf{B}_{\mathbf{X}}{ }^{\mathbf{T}} \cdot \mathbf{F} \cdot \mathbf{B}_{\mathbf{X}}
$$

$$
\mathbf{F}_{W}=\mathbf{B}_{\mathbf{X}}{ }^{\mathbf{T}} \cdot \mathbf{F} \cdot \mathbf{B}_{W}
$$

$$
\begin{aligned}
&=\left[\begin{array}{lllll}
-1.166 & -1.166 & 0.6 & 0.6 & 2.0
\end{array}\right] \frac{1}{\mathrm{AE}}\left[\begin{array}{llll}
5.83 & & \\
& 5.83 & & \\
& & 3.0 & \\
& & & 3.0 \\
\\
& & & \\
& \\
& \\
1.667
\end{array}\right] \\
&=\left[\begin{array}{lllll}
-6.798 & -6.798 & 1.80 & 1.80 & 10.00
\end{array}\right] \frac{1}{\mathrm{AE}}\left[\begin{array}{r}
0 \\
-1944 \\
1.00 \\
-1.944 \\
1.00 \\
0 \\
1667
\end{array}\right]=\frac{31.59}{\mathrm{AE}}
\end{aligned}
$$

- Displacement Matrix (X):

$$
\begin{aligned}
& =\left[\begin{array}{lllll}
-1.166 & -1.166 & 0.6 & 0.6 & 2.0
\end{array}\right] \frac{1}{\mathrm{AE}}\left[\begin{array}{lllll}
5.83 & & & & \\
& 5.83 & & & \\
& & 3.0 & & \\
& & & 3.0 & \\
& & & & 5.0
\end{array}\right]\left[\begin{array}{r}
-1166 \\
-1166 \\
0.60 \\
0.60 \\
2.00
\end{array}\right] \\
& =\left[\begin{array}{lllll}
-6.798 & -6.798 & 1.8 & 1.8 & 10.0
\end{array}\right] \frac{1}{\mathrm{AE}}\left[\begin{array}{r}
-1.166 \\
-1166 \\
0.60 \\
0.60 \\
2.00
\end{array}\right]=\frac{38.01}{\mathrm{AE}}
\end{aligned}
$$

$$
=-\frac{\mathrm{AE}}{38.01} \times \frac{31.59}{\mathrm{AE}} \times 60=-49.87 \mathrm{kN}
$$

- Final Moments (P):

$$
\begin{gathered}
\mathbf{P}=\boldsymbol{\mu}+\mathbf{F} \\
\{P\}=\left[\begin{array}{rr}
0 & -1.667 \\
-1.944 & -1.166 \\
1.00 & 0.6 \\
0 & 0.6 \\
1.667 & 2.0
\end{array}\right]\left\{\begin{array}{c}
60 \\
-49.87
\end{array}\right\}=\left\{\begin{array}{r}
58.15 \\
-58.25 \\
30.08 \\
-29.92 \\
-0.26
\end{array}\right\}
\end{gathered}
$$

