### 2.1 Mathematical induction:

## Statement of the principle of Mathematical Induction

Let $P(n)$ be statement involving the natural number " $n$ ".

If $\mathrm{P}(1)$ is true.

Under the assumption that when $\mathrm{P}(\mathrm{k})$ is true, $\mathrm{P}(\mathrm{k}+1)$ is true, then we conclude that a statement $\mathrm{P}(\mathrm{n})$ is true for all natural number " $n$ ".

Steps to prove that a statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers

Step:1 We must prove that $\mathrm{P}(1)$ is true.

Step:2 By assuming $\mathrm{P}(\mathrm{k})$ is true, we must prove that $\mathrm{P}(\mathrm{k}+1)$ is also true.

## NOTE:

Step:1 is known as the basic step.

Step:2 is known as inductive step.

## Problems on Mathematical Induction:

1. Show that $1+2+\ldots+n=\frac{n(n+1)}{2}$ using mathematical induction.

## Solution:

Let $S$ be the set of positive integers.

To prove $p(1)$ is true.

When $n=1$

$$
\text { RHS } \Rightarrow \frac{n(n+1)}{2}=\frac{1(1+1)}{2}=1=\text { LHS }
$$

Hence $p(1)$ is true.

Assume that $\boldsymbol{p}(\boldsymbol{k})$ is true.

$$
1+2+\ldots+k=\frac{k(k+1)}{2}
$$

To prove $p(k+1)$ is true.

Adding $k+1$ on both sides

$$
\Rightarrow 1+2+\ldots+k+(k+1)=\frac{(k+1)(k+2)}{2}
$$

$$
=\frac{k(k+1)}{2}+(k+1)
$$

$$
=\frac{k(k+1)+2(k+1)}{2}
$$

$$
=\frac{(k+1)(k+2)}{2}
$$

Hence $p(k+1)$ is true.
2. Show that $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$

## Solution:

Let $S$ be the set of positive integers.

To prove $p(1)$ is true.

When $n=1$

RHS $\Rightarrow \frac{n(n+1)(2 n+1)}{6}=\frac{1(1+1)(2+1)}{6}=1=$ LHS

Hence $p(1)$ is true.

Assume that $p(k)$ is true.

$$
\begin{equation*}
1^{2}+2^{2}+3^{2}+\ldots+k^{2}=\frac{k(k+1)(2 k+1)}{6} \tag{1}
\end{equation*}
$$

To prove $p(k+1)$ is true.

$$
1^{2}+2^{2}+3^{2}+\ldots+k^{2}+(k+1)^{2}=\frac{(k+1)(k+2)(2 k+3)}{6}
$$

Adding $(k+1)^{2}$ on both sides

$$
\Rightarrow 1^{2}+2^{2}+3^{2}+\ldots+k^{2}+(k+1)^{2}=\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2}
$$

$$
\begin{aligned}
& =(k+1)\left[\frac{k(2 k+1)}{6}+(k+1)\right] \\
& =\frac{(k+1)}{6}[k(2 k+1)+6(k+1)] \\
& =\frac{(k+1)}{6}\left[2 k^{2}+k+6 k+6\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(k+1)}{6}\left[2 k^{2}+7 k+6\right] \\
& =\frac{(k+1)}{6}\left[2 k^{2}+4 k+3 k+6\right] \\
& =\frac{(k+1)}{6}[2 k(k+2)+3(k+2)] \\
& =\frac{(k+1)}{6}[(k+2)+(2 k+3)]
\end{aligned}
$$

Hence $p(k+1)$ is true.
3. Show that $1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$

## Solution:

Let $S$ be the set of positive integers.

To prove $p(1)$ is true.

When $n=1$


RHS $\Rightarrow \frac{n^{2}(n+1)^{2}}{4}=\frac{1^{2}(1+1)^{2}}{4}=1=$ LHS
Hence $p(1)$ is true.

Assume that $\boldsymbol{p}(\boldsymbol{k})$ is true.

$$
\begin{equation*}
1^{3}+2^{3}+3^{3}+\ldots+k^{3}=\frac{k^{2}(k+1)^{2}}{4} \tag{1}
\end{equation*}
$$

To prove $p(k+1)$ is true.

$$
1^{3}+2^{3}+3^{3}+\ldots+k^{3}+(k+1)^{3}=\frac{(k+1)^{2}(k+2)^{2}}{4}
$$

Adding $(k+1)^{3}$ on both sides

$$
\Rightarrow 1^{3}+2^{3}+3^{3}+\ldots+k^{3}+(k+1)^{3}=\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3}
$$

$$
\begin{aligned}
& =\frac{k^{2}(k+1)^{2}+4(k+1)^{3}}{4} \\
& =\frac{(k+1)^{2}}{4}\left[k^{2}+4(k+1)\right]
\end{aligned}
$$

$$
=\frac{(k+1)^{2}}{4}\left[k^{2}+4 k+4\right]
$$

$$
=\frac{(k+1)^{2}}{4}\left[k^{2}+2 k+2 k+4\right]
$$

$$
\begin{aligned}
& =\frac{(k+1)^{2}}{4}[k(k+2)+2(k+2)] \\
& =\frac{(k+1)^{2}}{4}[(k+2)+(k+2)]
\end{aligned}
$$

$$
=\frac{(k+1)^{2}(k+2)^{2}}{4}
$$

Hence $p(k+1)$ is true.
4.Prove that $n^{3}-n$ is divisible by 3 , using mathematical induction.

## Solution:

Let $S$ be the set of positive integers.

To prove $p(1)$ is true.

When $n=1$

RHS $\Rightarrow n^{3}-n=1^{3}-1=0$ is divisible by 3 .

Hence $p(1)$ is true.

Assume that $\boldsymbol{p}(\boldsymbol{k})$ is true.
$k^{3}-k$ is divisible by 3.
$\Rightarrow k^{3}-k=3 m$
$\Rightarrow k^{3}=3 m+k$

To prove $p(k+1)$ is true.
$(k+1)^{3}-(k+1)$ is divisible by 3.

$$
\begin{aligned}
& \Rightarrow k^{3}+1+3 k^{2}+3 k-k-1 \\
& \Rightarrow k^{3}+3 k^{2}+2 k \\
& \Rightarrow(3 m+k)+3 k^{2}+2 k \\
& \Rightarrow 3 m+3 k^{2}+3 k \\
& \Rightarrow 3\left(m+k^{2}+k\right) \text { is divisible by } 3
\end{aligned}
$$

Hence $p(k+1)$ is true.

## 5. Prove that $8^{n}-3^{n}$ is a multiple of 5 . .

## Solution:

Let $S$ be the set of positive integers.

To prove $p(1)$ is true.

When $n=1$

RHS $\Rightarrow 8^{n}-3^{n}=8^{1}-3^{1}=5$ is a multiple of 5 which is true.

Hence $p(1)$ is true.

Assume that $p(k)$ is true.
$8^{k}-3^{k}$ is a multiple of 5 .
$\Rightarrow 8^{k}-3^{k}=5 m$
$\Rightarrow 8^{k}=5 m+3^{k} \ldots$ (1)

To prove $p(k+1)$ is true.
$8^{k+1}-3^{k+1}$ is a multiple of 5 .

$$
\begin{aligned}
& \Rightarrow 8 \cdot 8^{k}-3 \cdot 3^{k} \\
\Rightarrow & \left(5 m+3^{k}\right) \cdot 8-3 \cdot 3^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 5 \cdot 8 m+8 \cdot 3^{k}-3 \cdot 3 k \\
& \Rightarrow 5 \cdot 8 m+5 \cdot 3^{k} \\
& \Rightarrow 5\left(8 m+3^{k}\right) \text { is a multiple of } 5 .
\end{aligned}
$$

Hence $p(k+1)$ is true.

## 6. State and prove Handshaking theorem.

Suppose there are " $n$ " people in a room, $n \geq 1$ and that they all shake hands with one another, prove that $\frac{n(n-1)}{2}$ handshakes will have accured.

## Solution:

Let $S$ be the set of positive integers.

To prove $p(1)$ is true.

When $n=1$

$p(1)=\frac{n(n-1)}{2}=\frac{1(1-1)}{2}=0$
$\Rightarrow$ there is no handshake accured which means there is only one person.

Hence $p(1)$ is true.

Assume that $\boldsymbol{p}(\boldsymbol{k})$ is true.

$$
\begin{equation*}
p(k)=\frac{k(k-1)}{2} \tag{1}
\end{equation*}
$$

To prove $p(k+1)$ is true.

$$
p(k+1)=\frac{(k+1) k}{2}
$$

Suppose if one person entered into the room then he will shake his hand with " $k$ " other person whenever $p(k)$ is true.

Hence $p(k+1)$ is true by mathematical induction.

## The Well - Ordering Property:

The validity of mathematical induction follows from the following fundamental axioms about the set of integers.

Every non - empty set of non - negative integers has a least element.

The well ordering property can often be used directly in the proof.

