ROHINI cOLLEGE OF ENGINEERING \& TECHNOLOGY DEPARTMENT OF MATHEMATICS

UNIT I - FOURIER SERIES

Harmonic Analysis

The process of finding the Fourier series for a function given by numerical values is known as harmonic analysis.

$$
f(x)=\frac{a_{0}}{2}-+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \operatorname{sinnx}\right) \text {, where }
$$

$\mathrm{ie}, \mathrm{f}(\mathrm{x})=(\mathrm{a} 0 / 2)+(\mathrm{a} 1 \cos \mathrm{x}+\mathrm{b} 1 \sin \mathrm{x})+(\mathrm{a} 2 \cos 2 \mathrm{x}+\mathrm{b} 2 \sin 2 \mathrm{x})+(\mathrm{a} 3 \cos 3 \mathrm{x}+\mathrm{b} 3 \sin 3 \mathrm{x})+-$ -----------...(1)

$$
\begin{aligned}
& \text { Here } \mathrm{a}_{0}=2[\text { mean values of } \mathrm{f}(\mathrm{x})]=-\quad-------- \\
& \text { n }
\end{aligned}
$$

n
\& $\quad b_{n}=2[$ mean values of $f(x) \operatorname{sinn} x]=-------------$
n
In (1), the term $(\operatorname{arcos} x+b 1 \sin x)$ is called the fundamental or first harmonic, the term $(a 2 \cos 2 \mathrm{x}+\mathrm{b} 2 \sin 2 \mathrm{x})$ is called the second harmonic and so on.

Problem 1.

Compute the first three harmonics of the Fourier series of $f(x)$ given by the following table.

$\mathrm{x}:$	0	$\pi / 3$	$2 \pi / 3$	π	$4 \pi / 3$	$5 \pi / 3$	2π
$\mathrm{f}(\mathrm{x}):$	1.0	1.4	1.9	1.7	1.5	1.2	1.0

We exclude the last point $\mathrm{x}=2 \pi$.
Let $\mathrm{f}(\mathrm{x})=(\mathrm{a} 0 / 2)+(\mathrm{a} 1 \cos \mathrm{x}+\mathrm{b} 1 \sin \mathrm{x})+(\mathrm{a} 2 \cos 2 \mathrm{x}+\mathrm{b} 2 \sin 2 \mathrm{x})+\ldots \ldots \ldots$.
To evaluate the coefficients, we form the following table.

x	$\mathrm{f}(\mathrm{x})$	$\cos \mathrm{x}$	$\sin \mathrm{x}$	$\cos 2 \mathrm{x}$	$\sin 2 \mathrm{x}$	$\cos 3 \mathrm{x}$	$\sin 3 \mathrm{x}$
0	1.0	1	0	1	0	1	0
$\pi / 3$	1.4	0.5	0.866	-0.5	0.866	-1	0
$2 \pi / 3$	1.9	-0.5	0.866	-0.5	-0.866	1	0
π	1.7	-1	0	1	0	-1	0
$4 \pi / 3$	1.5	-0.5	-0.866	-0.5	0.866	1	0
$5 \pi / 3$	1.2	0.5	-0.866	-0.5	-0.866	-1	0

$$
\therefore \mathrm{f}(\mathrm{x})=1.45-0.37 \cos \mathrm{x}+0.17 \sin \mathrm{x}-0.1 \cos 2 \mathrm{x}-0.06 \sin 2 \mathrm{x}+0.033 \cos 3 \mathrm{x}+\ldots
$$

Problem 2

Obtain the first three coefficients in the Fourier cosine series for y, where y is given in the following table:

$$
\begin{align*}
& \text { Now, } \mathrm{a}_{0}=\underline{2 \sum \mathrm{f}(\mathrm{x})}=\underline{2(1.0+1.4+1.9+1.7+1.5+1.2)}=2.9 \\
& 6 \tag{6}\\
& a_{1}=-----------\quad=-0.37 \\
& 6 \\
& 2 \sum \mathrm{f}(\mathrm{x}) \cos 2 \mathrm{x} \\
& a_{2}=-------------\quad=-1 \\
& 6 \\
& a_{3}=------------\quad=0.033 \\
& 6 \\
& 2 \sum \mathrm{f}(\mathrm{x}) \sin \mathrm{x} \\
& \mathrm{~b}_{1}=-------------=0.17 \\
& 6 \\
& b_{2}=--------------\quad=-0.06 \\
& 6 \\
& b_{3}=\frac{2 \sum f(x) \sin 3 x}{6}=0
\end{align*}
$$

$\mathrm{x}:$	0	1	2	3	4	5
$\mathrm{y}:$	4	8	15	7	6	2

Taking the interval as 60°, we have

$\theta:$	0°	60°	120°	180°	240°	300°
$\mathrm{x}:$	0	1	2	3	4	5
$\mathrm{y}:$	4	8	15	7	6	2

\therefore Fourier cosine series in the interval $(0,2 \pi)$ is $\mathrm{y}=(\mathrm{a} 0 / 2)+\mathrm{a} \cos \theta+$ $a 2 \cos 2 \theta+\mathrm{a} \cos 3 \theta+\ldots .$.
To evaluate the coefficients, we form the following table.

θ°	$\cos \theta$	$\cos 2 \theta$	$\cos 3 \theta$	y	$\mathrm{y} \cos \theta$	$\mathrm{y} \cos 2 \theta$	$\mathrm{y} \cos 3 \theta$
0°	1	1	1	4	4	4	4
60°	0.5	-0.5	-1	8	4	-4	-8
120°	-0.5	-0.5	1	15	-7.5	-7.5	15
180°	-1	1	-1	7	-7	7	-7
240°	-0.5	-0.5	1	6	-3	-3	6
300°	0.5	-0.5	-1	2	1	-1	-2

Now, $\quad \mathrm{a} 0=2(42 / 6)=14$
a1 $=2(-8.5 / 6)=-2.8$
a2 $=2 \quad(-4.5 / 6)=$
a3 $=2(8 / 6)=2.7$
$\mathrm{y}=7-2.8 \cos \theta-1.5 \cos 2 \theta+2.7 \cos 3 \theta+\ldots .$.

Problem 3

The values of x and the corresponding values of $f(x)$ over a period T are given below. Show that $f(x)=0.75+0.37 \cos \theta+1.004 \sin \theta$, where $\theta=(2 \pi x \quad) / T$

$\mathrm{x}:$	0	$\mathrm{~T} / 6$	$\mathrm{~T} / 3$	$\mathrm{~T} / 2$	$2 \mathrm{~T} / 3$	$5 \mathrm{~T} / 6$	T
$\mathrm{y}:$	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

We omit the last value since $f(x)$ at $x=0$ is known.
Here $\theta=2 \pi \mathrm{x} / \mathrm{T}$
When x varies from 0 to T, θ varies from 0 to 2π with $2 \pi / 6$. an incre

Let $\mathrm{f}(\mathrm{x})=\mathrm{F}(\theta)=(\mathrm{a} 0 / 2)+\mathrm{a} 1 \cos \theta+\mathrm{b}_{1} \sin \theta$.
To evaluate the coefficients, we form the following table.

θ	y	$\cos \theta$	$\sin \theta$	$\mathrm{y} \cos \theta$	$\mathrm{y} \sin \theta$
0	1.98	1.0	0	1.98	0
$\pi / 3$	1.30	0.5	0.866	0.65	1.1258
$2 \pi / 3$	1.05	-0.5	0.866	-0.525	0.9093
Π	1.30	-1	0	-1.3	0
$4 \pi / 3$	-0.88	-0.5	-0.866	0.44	0.762
$5 \pi / 3$	-0.25	0.5	-0.866	-0.125	0.2165
	4.6			1.12	3.013

Now, $\mathrm{a} 0=2\left(\sum \mathrm{f}(\mathrm{x}) / 6\right)=1.5$

$$
\begin{aligned}
& \mathrm{a} 1=2(1.12 / 6)=0.37 \\
& \mathrm{a} 2=2(3.013 / 6)=1.004
\end{aligned}
$$

Therefore, $\mathrm{f}(\mathrm{x})=0.75+0.37 \cos \theta+1.004 \sin \theta$

