
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3501 – COMPILER DESIGN

WRITING A GRAMMAR

 Grammars are capable of describing most, but not all, of the syntax of programming languages. For

instance, the requirement that identifiers be declared before they are used, cannot be described by a

context-free grammar.

 Therefore, the sequences of tokens accepted by a parser form a superset of the programming language;

subsequent phases of the compiler must analyze the output of the parser to ensure compliance with rules

that are not checked by the parser.

Eliminating Ambiguity

Ambiguity of the grammar that produces more than one parse tree for leftmost or rightmost derivation

can be eliminated by re-writing the grammar. Consider the following "dangling else" grammar.

stmt → if expr then stmt | if expr then stmt else stmt | other

Here "other" stands for any other statement. According to this grammar, the compound conditional statement

if E1 then S1 else if E2 then S2 else S3

But the grammar is ambiguous since the string

if E1 then if E2 then S1 else S2

Has the following two parse trees for leftmost derivation:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3501 – COMPILER DESIGN

Elimination of Left Recursion:

 A grammar is left recursive if it has a non-terminal A such that there is a derivation

A=> Aα

 Top down parsing methods can’t handle left-recursive grammars

 A simple rule for immediate left recursion elimination for: A => A α|β

 We may replace it with

A -> β A’

A’ -> α A’ | ɛ

Example to eliminate Immediate left recursion: Consider the following grammar for arithmetic expressions:

 E → E+T | T

 T → T*F | F

 F → (E) | id

Left factoring

 Left factoring is a process of factoring out the common prefixes of two or more production alternates

for the same nonterminal.

 Left factoring is a grammar transformation that is useful for producing a grammar suitable for predictive

or top-down parsing.

Consider following grammar:

stmt -> if expr then stmt else stmt | if expr then stmt

On seeing input if it is not clear for the parser which production to use. So, can perform left factoring, where

the general form is:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3501 – COMPILER DESIGN

TOP DOWN PARSING

 Top-down parsing can be viewed as the problem of constructing a parse tree for the input string, starting

from the root and creating the nodes of the parse tree in preorder (depth-first).

 Top down parsing can be viewed as finding a leftmost derivation for an input string.

 Parsers are generally distinguished by whether they work top-down (start with the grammar's start

symbol and construct the parse tree from the top) or bottom-up (start with the terminal symbols that

form the leaves of the parse tree and build the tree from the bottom).

 Top down parsers include recursive-descent and LL parsers, while the most common forms of bottom

up parsers are LR parsers

