ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

I CONSTRUCTION OF PARAPOLA BY ECCENTRICITY METHOD

EXAMPLE 1
To draw a parabola with the distance of the focus from the directrix at 50 mm (Eccentricity method)

Construction:

1. Draw the axis AB and the directrix CD at right angles to it:
2. Mark the focus F on the axis at 50 mm .
3. Locate the vertex V on AB such that $\mathrm{AV}=\mathrm{VF}$
4. Draw a line VE perpendicular to AB such that $\mathrm{VE}=\mathrm{VF}$
5. Join A, E and extend. Now, $\mathrm{VE} / \mathrm{VA}=\mathrm{VF} / \mathrm{VA}=1$, the eccentricity.
6. Locate number of points $1,2,3$, etc., to the right of V on the axis, which need not be equidistant.
7. Through the points $1,2,3$, etc., draw lines perpendicular to the axis and to meet the line AE extended at $1^{\prime}, 2^{\prime}, 3^{\prime}$ etc.
8. With centre F and radius 1-1', draw arcs intersecting the line through 1 at P 1 and $\mathrm{P}^{\prime} 1$
9. Similarly, locate the points P2, P $2, ~ P 3, ~ P^{\prime} 3$ etc., on either side of the axis. Join the points by smooth curve, forming the required parabola.

To draw a normal and tangent through a point 40 mm from the directrix.
To draw a tangent and normal to the parabola. locate the point M which is at 40 mm from the directrix. Then join M to F and draw a line through F , perpendicular to MF to meet the directrix at T . The line joining T and M and extended is the tangent and a line NN , through M and perpendicular to TM is the normal to the curve.

