- ROHINI COLLEGE OF ENGINED

Space-borne/ based Platforms:

 In space- borne remote sensing, sensors are mounted on-board a space-

shuttle or satellite) orbiting the earth.

 Space-borne or satellite platform are onetime
	- ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

	In space- borne remote sensing, sensors are mounted on-board a spacecraft (space

	shuttle or satellite) orbiting the earth.

	Space-borne or satellite platform are onetime cost ef ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY
Shorne/ based Platforms:
In space- borne remote sensing, sensors are mounted on-board a spacecraft (space
shuttle or satellite) orbiting the earth.
Space-borne or satellite platfo ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

	Space-borne remote sensing, sensors are mounted on-board a spacecraft (space

	shuttle or satellite) orbiting the earth.

	Space-borne or satellite platform are onetime cost effect ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

	ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

	Simulation Space-borne remote sensing, sensors are mounted on-board a spacecraft (space

	shuttle or satellite) orbiting the earth.

	Sp ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

	ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

	Space-borne imaging ranges from altitude constrained by the space-from altitude or satellite or statellite platform are onetime cost e ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

	Space-borne remote sensing, sensors are mounted on-board a spacecraft (space

	shuttle or satellite) orbiting the earth.

	Space-borne or satellite platform are onetime cost effect ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

	ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

	In space-borne remote sensing, sensors are mounted on-board a spacecraft (space

	shuttle or satellite) orbiting the earth.

	Space-born Romec' based Platforms:

	In space- borne remote sensing, sensors are mounted on-board a spacecraft (space

	shuttle or satellite) orbiting the carth.

	Space-borne or satellite platform are onetime cost effected but relative Reader Platforms:

	Reader Platforms:

	In space-borne remote sensing, sensors are mounted on-board a spacecraft (space

	shuttle or satellite) orbiting the earth.

	Space-borne or satellite platform are onetime cost effected borne/ based Platforms:

	In space- borne remote sensing, sensors are mounted on-board a spacecraft (space

	shuttle or satellite) orbiting the earth.

	Space-borne or satellite platform are onetime cost effected but relative nome/based Platforms:

	In space- borne remote sensing, sensors are mounted on-board a spacecraft (space

	shuttle or satellite) orbiting the carth.

	Space-borne or satellite platform are onetime cost effected but relatively some/based Platforms:

	In space- borne remote sensing, sensors are mounted on-board a spacecraft (space

	shuttle or satellite) orbiting the earth.

	Space-borne or satellite) arbiting the earth.

	Space-borne or satellite) a In space- borne remote sensing, sensors are mounted on-board a spacecraft (space
shuttle or satellite) orbiting the earth.
Space-borne or satellite platform are onetime cost effected but relatively lower cost perunit
area Space-borne or satellite platform are onetime cost effected but relatively lower cost preunit
area of coverage, can acquire imagery of entire earth without taking permission.
Space-borne imaging ranges from altitude 250 km
	- \bullet
	-
	-
	-
	-
	-
	-
	- basis.
	- impetus.

• Space-borne remote sensing provides the following advantages:large area coverage.

• Frequent and repetitive coverage of an area of interest.

• Quantitative measurement of ground features using radiometrically calibrat The first requirement for remote sensing is to have an energy source to illuminate the **Example 12** Constrained representing the sense of th **Electromagnetic radiation.** All electromagnetic radiation has fundamental properties and space Spacecraft as Platform:
 Electromagnetic radiation and all electromagnes and analysis.
 Electromagnetic radiation has funda • Schir-adobnated computerized processing and analysis.
• Relatively lower cost per unit area of coverage. Spaceraft as Platform:
• Remote sensing is also conducted from the space shuttle or artificial satellites are manna Remote sensing is also conducted from the space shuttle or artificial satellites. Artificial satellits are mannade objects, which revolve around another object.
Satellite can cover much more land space than planes and can

• Kernote sensing is also conducted from the space sintue or artificial satellities are mannade objects, which revolve around another object.

• Statlitie can cover much more land space than planes and can monitor areas on Satemes are manniade orjects, which revoive around another orject.

Statilitic can cover much more land space than planes and can monitor areas on a regular

basis.

LECTROMAGNETIC SPECTRUM

The first requirement for remot • Satellite can cover much more land space than planes and can monitor areas on a regular
basis.
• Later, with LANDSAT and SPOT satellites program, space photography received a
higher impetus.
ELECTROMAGNETIC SPECTRUM
The **EXECTROMAGNETIC SPECTRUM**
 ELECTROMAGNETIC SPECTRUM

The first requirement for remote sensing is to have an **energy source to illuminate the**
 ELECTROMAGNETIC SPECTRUM

The first requirement for remote sensing is to h Later, while LATeDSAT1 and SPOT satemets program, space photography received antiguer
impetus.

TREOMAGNETIC SPECTRUM

The first requirement for remote sensing is to have an energy source to illuminate the

t(tunless the impeas.

ELECTROMAGNETIC SPECTRUM

The first requirement for remote sensing is to have an **energy source to illuminate the**
 target(unless the sensed energy is being emitted by the target). This energy is in the form of
 CTROMAGNETIC SPECTRUM
The first requirement for remote sensing is to have an energy source to illuminate the
t(unless the sensed energy is being emitted by the target). This energy is in the form of
omagnetic radiation. The first requirement for remote sensing is to have an **energy source to illuminate the**
 target(unless the sensed energy is being emitted by the target). This energy is in the form of

electromagnetic radiation. All el **target**(unless the sensed energy is being emitted by the target). This energy is in the form of electromagnetic radiation. All electromagnetic radiation has fundamental properties and behaves
in predictable ways accordin

Wavelength is usually represented by the Greek letter lambda (λ) . Wavelength is measured in Frequency

Fig 1.2 – Wavelength and frequency

A wave can be characterized by its wavelength or its frequency. The wavelength is the length

of one wave cycle, which can be measured as the distance between successive wave Frequency

Fig 1.2 – Wavelength and frequency

Fig 1.2 – Wavelength and frequency

A wave can be characterized by its wavelength or its frequency. The wavelength is the length

of one wave cycle, which can be measured as t Frequency

Fig 1.2 – Wavelength and frequency

Fig 1.2 – Wavelength and frequency

A wave can be characterized by its wavelength or its frequency. The wavelength is the length

of one wave cycle, which can be measured as t Frequency

Fig 1.2 – Wavelength and frequency

A wave can be characterized by its wavelength or its frequency. The wavelength is the length

of one wave cycle, which can be measured as the distance between successive wave Frequency

Fig 1.2 – Wavelength and frequency

A wave can be characterized by its wavelength or its frequency. The wavelength is the length

of one wave cycle, which can be measured as the distance between successive wave the metric (m) or some factor of meters such as nanometers (m, 10-9 meters), micrometers (um, 10-6

fmeters) (um, 10-6 meters) or centimeters (em, 10-2 meters). Frequency refers to the number of

cycles of a wave passing

Therefore, the two are inversely related to each other. The shorter the wavelength, the higher 6 meters) (um, 10-6 meters) or centimeters (cm, 10-2 meters). Frequency refers to the number of
cycles of a wave passing a fixed point per unit of time. Frequency is normally measured in hertz
(Hz), equivalent to one cycl to understanding the electromagnetic spectrum ranges from the shorter wavelengths (including gamma and

to understanding the electromagnetic served and various multiples of hertz.

Wavelength and frequency are related by Wavelength and frequency are related by the following formula:
 $z = \lambda v$

where:
 $\lambda = \text{wavelength (m)}$
 $\psi = \text{frequency (cycle by the 2x10} \text{ m/s})$

Therefore, the two are inversely related to each other. The shorter the wavelength, the higher

th Wavelength and frequency are related by the following formula:
 $e=\lambda v$

where:
 $\lambda =$ wavelength (m)
 \downarrow - wavelength (m)

Therefore, the two are inversely related to each other. The shorter the wavelength, the higher

The electromagnetic spectrum ranges from the shorter wavelengths (including gamma and

For the most purposes ultraviolet or UV of the spectrum shortest wavelengths are practical **EXECUTE AND THE SET OF STATE OF STATE OF STATE STATES SET ON STATE IS SERVED THE REGIONS IMPORTANT TO REMOTE SENSING:**

Ultraviolet or UV

For the most purposes ultraviolet or UV of the spectrum shortest wavelengths are
 Fig 3 – Electromagnetic Spectrum

WAVELENGTH REGIONS IMPORTANT TO REMOTE SENSING:

Ultraviolet or UV

For the most purposes ultraviolet or UV of the spectrum shortest wave

forremote sensing. This wavelength is beyond the The light which our eyes - our "remote sensors" - can detect is part of the visible spectrum shorts wavelengths are practical
foremote sensing. This wavelength is beyond the violet portion of the visible wavelengths hence

WAVELENGTH REGIONS IMPORTANT TO REMOTE SENSING:

Ultraviolet or UV

For the most purposes ultraviolet or UV of the spectrum shortest wavelengths are practical

foremote sensing. This wavelength is beyond the violet portion **WAVELENGTH REGIONS IMPORTANT TO REMOTE SENSING:**

Ultraviolet or UV

For the most purposes ultraviolet or UV of the spectrum shortest wavelengths are practical

foremote sensing. This wavelength is beyond the violet port Ultraviolet or UV

For the most purposes ultraviolet or UV of the spectrum shortest wavelengths are practical

forremote sensing. This wavelength is beyond the violet portion of the visible wavelengths hence

itnames. Some Ultraviolet or UV

For the most purposes ultraviolet or UV of the spectrum shortest wavelengths are practical

forcemote sensing. This wavelength is beyond the violet portion of the visible wavelengths hence

itnames. Som For the most purposes ultraviolet or UV of the spectrum shortest wavelengths are practical
forremote sensing. This wavelength is beyond the violet portion of the visible wavelengths hence
itnames. Some carth surface mater for
remote sensing. This wavelength is beyond the violet portion of the visible wavelengths hence
tinames. Some earth surface materials primarily rocks and materials emit visible radiation when
illuminated by UV radiation.

ROHINI COLLEGE OF ENGI

Violet: 0.4 -0.446 µm

Blue: 0.446 -0.500 µm

ROHINI COLLEGE OF ENGIN
 Violet: 0.4 -0.446 µm
 Blue: 0.446 -0.500 µm
 Green: 0.500 -0.578 µm

ROHINI COLLEGE OF ENGINEE
 Violet: 0.4 -0.446 μm
 Blue: 0.446 -0.500 μm

Green: 0.500 -0.578 μm
 Yellow: 0.578 -0.592 μm ROHINI COLLEGE OF ENGINEER

Violet: 0.4-0.446 µm

Blue: 0.446 -0.500 µm

Green: 0.500 -0.578 µm

Yellow: 0.578 -0.592 µm

Orange: 0.592 -0.620 µm ROHINI COLLEGE OF ENGINEER
 Violet: 0.4 -0.446 μm
 Blue: 0.446 -0.500 μm

Green: 0.500 -0.578 μm
 Vellow: 0.578 -0.592 μm
 Orange: 0.592 -0.620 μm
 Red: 0.620 -0.7 μm

ROHINI COLLEGE OF ENGIN

Violet: 0.4-0.446 µm

Blue: 0.446-0.500 µm

Green: 0.500-0.578 µm

Yellow: 0.578-0.592 µm

Orange: 0.592-0.620 µm

Red: 0.620-0.7 µm

Blue, green, and red are the primary colors or wavelengths of t 1: 0.4 -0.446 μ m

1: 0.500 -0.578 μ m

11: 0.500 -0.578 μ m

11: 0.578 -0.592 μ m

11: 0.578 -0.592 μ m

10.620 -0.7 μ m

10.620 -0.7 μ m

11: 0.592 -0.620 μ m

11: 0.592 -0.620 μ m

11: 0.592 -0.620 $\$ Blue: 0.446 -0.500 µm

Green: 0.500 -0.578 µm

Yellow: 0.578 -0.592 µm

Red: 0.620 -0.7 µm

Red: 0.620 -0.7 µm

Blue, green, and red are the primary colors or wavelengths of the visible spectrum. They

aredefined as such b Blue: 0.446 -0.500 µm

Green: 0.500 -0.578 µm

Yellow: 0.578 -0.592 µm

Red: 0.620 -0.7 µm

Red: 0.620 -0.7 µm

Blue, green, and red are the primary colors or wavelengths of the visible spectrum. They

aredefined as such b **Green:** 0.500 -0.578 μ m
 Vellow: 0.578 -0.592 μ m
 Red: 0.620 -0.7 μ m
 Red: color, and **red** are the **primary colors** or wavelength **Green:** 0.500 -0.578 μ m
 Yellow: 0.578 -0.592 μ m
 Orange: 0.592 -0.620 μ m
 Red: 0.620 -0.7 μ m
 Red: 0.620 -0.7 μ m
 Red: 0.620 -0.7 μ m
 Red: green, and **red** are the **primary** colors or wav **Calcularies:** 0.578 - 0.592 μ m
 Red: 0.620 - 0.7 μ m
 Rediction a prism, and red are the **perimary** colors or an be created from the **Orange:** 0.592 -0.620 μ m
 Red: 0.620 -0.7 μ m
 Red: 0.620 -0.7 μ m
 **Blue, green, and red are the primary colors or wavelengths of the visit

are defined as such because no single primary color can be created Blue, green, and red are the primary colors or wavelengths of the visible spectrum.** They are defined as such because no single primary color can be created from the other two, but all other colors can be formed by combi **Blue, green, and red are the primary colors or wavelengths of the visible spectrum.** They are
defined as such because no single primary color can be created from the other two, but all other
colors can be formed by combi colors can be formed by combining blue, green, and red in various proportions. Althoughwe see
sunlight as a uniform or homogeneous color, it is composed of various wavelengths of radiation
in primarily the ultraviolet, vis ght as a uniform or homogeneous color, it is composed of various wavelengths of radiation
marily the ultraviolet, visible and infrared portions of the spectrum. The visible portion of
adiation can be shown in its component

The next portion of the spectrum of interest is the infrared (IR) region which covers the in primarily the ultraviolet, visible and infrared portions of the spectrum. The visible portion of
this radiation can be shown in its component colors when sunlight is passed through a **prism**,
which bends the light in d this radiation can be shown in its component colors when sunlight is passed through a **prism**,
which bends the light in differing amounts according to wavelength.
 Infrared (IR)

The next portion of the spectrum of inte which bends the light in differing amounts according to wavelength.

Infrared (IR)

The next portion of the spectrum of interest is the infrared (IR) region which covers the

wavelength range from approximately 0.7 μ m

The reflected near IR covers wavelengths from approximately 0.7 μ m to 1.3 μ m is commonly

Microwave

This wavelength (or frequency) interval in the electromagnetic spectrum is commonly

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

This wavelength (or frequency) interval in the electromagnetic spectrum is commonly

referredto as a band, channel, or region. The major subdivision

The portion of the spectrum The portion of the spectrum of more recent interest to remote sensing is the microwave region Microwave

This wavelength (or frequency) interval in the electromagnetic spectrum is commonly

referredto as a band, channel, or region. The major subdivision

The portion of the spectrum of more recent interest to remote Wicrowave

This wavelength (or frequency) interval in the electromagnetic spectrum is commonly

referredto as a band, channel, or region. The major subdivision

The portion of the spectrum of more recent interest to remote Microwave

This wavelength (or frequency) interval in the electromagnetic spectrum is commonly

referredto as a band, channel, or region. The major subdivision

The portion of the spectrum of more recent interest to remote

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

WAVE THEORY AND PARRTICAL THEORY

Light can exhibit both a wave theory, and a particle theory at the same time. Much of the

time, light behaves like a wave. Light waves are also ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

Light can exhibit both a wave theory, and a particle theory at the same time. Much of the

light behaves like a wave. Light waves are also called electromagnetic waves because th **EXECT SECT WAVE THEORY AND PARRTICAL THEORY**

Light can exhibit both a wave theory, and a particle theory at the same time. Much of the

time,light behaves like a wave. Light waves are also called electromagnetic waves b **EXECT THEORY AND PARRTICAL THEORY**
 ARRITICAL THEORY

Light can exhibit both a wave theory, and a particle theory at the same time. Much of the

time, light behaves like a wave. Light waves are also called electromagnet **WAVE THEORY AND PARRTICAL THEORY**

Light can exhibit both a wave theory, and a particle theory at the same time. Much of the

time, light behaves like a wave. Light waves are also called electromagnetic waves because they ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

Light can exhibit both a wave theory, and a particle theory at the same time. Much of the

time, light behaves like a wave. Light waves are also called electromagnetic waves bec travel.

$$
f = 1/TT = 1/f
$$

Fig 1.4 – Electromagnetic propagation

Waves have two important characteristics - wavelength and frequency.

The sine wave is the fundamental waveform in nature. When dealing with light waves, we

referto the sine wave. T Fig 1.4 – Electromagnetic propagation

Waves have two important characteristics - wavelength and frequency.

The sine wave is the fundamental waveform in nature. When dealing with li

referto the sine wave. The period (*T* g 1.4 – Electromagnetic propagation
acteristics - wavelength and frequency.
amental waveform in nature. When dealing with light waves, we
iod (*T*) of the waveform is one full 0-to-360-degree sweep. The
ine period is give

Example 1.4 – Electromagnetic propagation

Waves have two important characteristics - wavelength and frequency.

The sine wave is the fundamental waveform in nature. When dealing with light waves, we

referto the sine w Fig 1.4 – Electromagnetic propagation
Waves have two important characteristies - wavelength and frequency.
The sine wave is the fundamental waveform in nature. When dealing with light waves, we
referto the sine wave. The Einstein's infamous equation

Fig 1.4 – Electromagnetic propagation

The sine wave is the fundamental waveform in nature. When dealing with light waves, we

referto the sine wave. The period (7) of the waveform is one ful Electromagnetic propagation

l waveform in nature. When dealing with light waves, we

of the waveform is one full 0-to-360-degree sweep. The

ord is given by the equation:
 $f = 1 / TT = 1 / f$

domain and go on for infinity. Th Waves have two important characteristies - wavelength and frequency.

The sine wave is the fundamental waveform in nature. When dealing with light waves, we

referto the sine wave. The period (*T*) of the waveform is one is the fundamental waveform in nature. When dealing with light waves, we
the sine wave. The period (*T*) of the waveform is one full 0-to-360-degree sweep. The
ship of frequency and the period is given by the equation:
 f referto the sine wave. The period (*T*) of the waveform is one full 0-to-360-degree sweep. The
relationship of frequency and the period is given by the equation:
 $f = 1/TT = 1/f$
The waveforms are always in the time domain an

ROHINI COLLEGE OF ENGINE
 PARTICAL THEORY

The basic idea of quantum theory is that radiant energy is transmitted

packetswhose energy is given in integral parts, of size hv, where h is Planck's

6.6252 x 10-34 J - s, an ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY
The basic idea of quantum theory is that radiant energy is transmitted in indivisible
estwhose energy is given in integral parts, of size hv, where h is Planck's constant =
2 x 10 **PARTICAL THEORY**

The basic idea of quantum theory is that radiant energy is transmitted in indivisible

packetswhose energy is given in integral parts, of size hv, where h is Planck's constant =

6.6252 x 10-34 J - s, an **FARTICAL THEORY**

The basic idea of quantum theory is that radiant energy is transmitted in indivisible

packetswhose energy is given in integral parts, of size hv, where h is Planck's constant =

6.6252 x 10-34 J - s, an photons. RICAL THEORY
The basic idea of quantum theory is that radiant energy is transmitted in indivisible
tswhose energy is given in integral parts, of size hv, where h is Planck's constant =
 $22 \times 10-34$ J - s, and v is the freq

EXATICAL THEORY

The basic idea of quantum theory is that radiant energy is transmitted in indivisible packets

whose energy is given in integral parts, of size hv, where h is Planck's constant =

6.6252 x 10-34 J - s, a RATICAL THEORY

The basic idea of quantum theory is that radiant energy is transmitted in indivisible

packetswhose energy is given in integral parts, of size hv, where h is Planck's constant =

6.6252 x 10-34 J - s, and v RARTICAL THEORY

The basic idea of quantum theory is that radiant energy is transmitted in indivisible

packetswhose energy is given in integral parts, of size hv, where h is Planck's constant =

6.6252 x 10-34 J - s, and **EXAL THEORY**
 EXAL THEORY

The basic idea of quantum theory is that radiant energy is transmitted in indivisible

packetswhose energy is given in integral parts, of size hv, where h is Planck's constant =

6.6252 x 10-3 **EXECAL THEORY**
 EXECUTE THEORY

The basic idea of quantum theory is that radiant energy is transmitted in packetswhose energy is given in integral parts, of size hv, where h is Planck's consected to 6.6252×10.34 J -**TICAL THEORY**
The basic idea of quantum theory is that radiant energy is transmitted in indivisible
testwhose energy is given in integral parts, of size hv, where h is Planck's constant =
 $2 \times 10-34$ J - s, and v is the **PARTICAL THEORY**

The basic idea of quantum theory is that radiant energy is transmitted in indivisible

packetswhose energy is given in integral parts, of size hv, where h is Planck's constant –

6.6252 x 10-34 J - s, a

The basic idea of quantum theory is that radiant energy is transmitted in indivisible packetswhose energy is given in integral parts, of size hv, where h is Planck's constant = 6.6252×10^{-34} J - s, and v is the frequen packetswhose energy is given in integral parts, of size hv, where h is Planck's constant = 6.6252 x 10-34 J - s, and v is the frequency of the radiation. These are called quanta or photons.
The dilemma of the simultaneous 6.6252 x 10-34 J - s, and v is the frequency of the radiation. These are called quanta or
photons.
The dilemma of the simultaneous wave and particle waves of electromagnetic energy may
be conceptually resolved by consider photons.
The dilemma of the simultaneous wave and particle waves of electromagnetic energy may
be conceptually resolved by considering that energy is not supplied continuously throughout a
wave, but rather that it is carri The dilemma of the simultaneous wave and particle waves of electromagnetic energy may
be conceptually resolved by considering that energy is not supplied continuously throughout a
wave, but rather that it is carried by pho be conceptually resolved by considering that energy is not supplied continuously throughout a
wave, but rather that it is carried by photons. The classical wave theory does not give the intensity
of energy at a point in sp wave, but rather that it is carried by photons. The classical wave theory does not give the intensity of energy at a point in space but gives the probability of finding a photon at that point. Thus, the classical concept o of cnergy at a point in space but gives the probability of finding a photon at that point. Thus, the classical concept of a wave yields to the idea that a wave simply describes the probability path for the motion of the in the motion of the individual photons.
The particular importance of the quantum approach for remote sensing is that it provides the
concept of discretc energy levels in materials. The values and arrangement of these levels The particular importance of the quantum approach for remote sensing is that it provides the
ept of discrete energy levels in materials. The values and arrangement of these levels are
ent for different materials. Informati concept of discrete energy levels in materials. The values and arrangement of these levels are different for different materials. Information about a given material is thus available in electromagnetic radiation because of different for different materials. Information about a given material is thus available in
electromagnetic radiation because of transitions between these energy levels. A transition to a
higher energy level is caused by th electromagnetic radiation because of transitions between these energy levels. A transition to a
higher energy level is caused by the absorption of energy, or from a higher to a lower energy level
is caused by the 'emissio higher energy level is caused by the absorption of energy, or from a higher to a lower energy level
is caused by the 'emission of energy. The amounts of energy cither absorbedor emitted correspond
precisely to the energy

$$
j^{\star} = \sigma T^4.
$$

Wien's displacement law states that the black body radiation curve for different temperatures ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY
WIEN'S DISPLACEMENT LAW
Wien's displacement law states that the black body radiation curve for different temperatures
beaks at a wavelength inversely proportional to the temperatu RISTIN'S DISPLACEMENT LAW
Wien's displacement law states that the black body radiation curve for different temperatures
at a wavelength inversely proportional to the temperature. The shift of that peak is a
t consequence o ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY
 WIEN'S DISPLACEMENT LAW
 Wien's displacement law states that the black body radiation curve for different temperatures

peaks at a wavelength inversely proportional to the te MEN'S DISPLACEMENT LAW
Wien's displacement law states that the black body radiation curve for different temperatures
peaks at a wavelength inversely proportional to the temperature. The shift of that peak is a
direct conse **EXECTS SUSPLACEMENT LAW**
 EXECTS DISPLACEMENT LAW
 EXECTS VION VION VALUATIVE VALUATE AT ANCHALLY SUSPENDED AT ANOTATION OF SUSPENDING A FUNCTION of that peak is a direct consequence of the Planck radiation law which d ROMINICOLEGE OF ENGINEERING & TECHNOLOGY
 NORMINE SURPERTERT LAW
 Wien's displacement law states that the black body radiation curve for different temperatures

a a wavelength inversely proportional to the temperature. **EXECUTE: EXECUTE: EXECUTE: WENT LAW**
 **Wien's displacement law states that the black body radiation curve for different temperatures

peaks at a wavelength inversely proportional to the temperature. The shift of th** FORMENT LAW
 EXECUTE: WE WEN'S DISPLACEMENT LAW

Wien's displacement law states that the black body radiation curve for different temperatures

peaks at a wavelength inversely proportional to the temperature. The shift ROBIN COLLEGE OF ENGINEERT SOMERT MANUAL TRANST WE ARE SURVEY TO A THE SURVEY SURPORTED THE MAX WIRE SURPORTED THE SPACE THE SHIFT Of that peak is a direct consequence of the Planck radiation law which describes the spect WIEN'S DISPLACEMENT LAW

Wien's displacement law states that the black body radiation curve for different temperatures

peaks at a wavelength inversely proportional to the temperature. The shift of that peak is a

direct Wien's displacement law states that the black body radiation curve for different temperatures
peaks at a wavelength inversely proportional to the temperature. The shift of that peak is a
direct consequence of the Planck r peaks at a wavelength inversely proportional to the temperature. The shift of that peak is a
direct consequence of the Planck radiation law which describes the spectral
brightness of black
body radiation as a function of

$$
_{\text{max}}=\frac{b}{\tau}
$$

If consequence of the Planek radiation law which deseribes the spectral
brightness of black radiation as a function of wavelength at any given temperature.
 EK'S LAW

Planek developed that more general equation and desc body radiation as a function of wavelength at any given temperature.

LANCK'S LAW

Planck developed that more general equation and described the entire shift of the spectrum

ofblack body radiation toward shorter waveleng **EXECT STANY**

Planck developed that more general equation and described the entire shift of the spectrum

of black body radiation toward shorter wavelengths as temperature increases.

Formally, Wien's displacement law st Planck doclear of that more general equation and described the entire shift of the spectrum
ofblack body radiation toward shorter wavelengths as temperature increases.
Formally, Wien's displacement law states that the spe Planck developed that more general equation and described the entire shift of the spectrum
ofblack body radiation toward shorter wavelengths as temperature increases.
Formally, Wien's displacement law states that the spec Formally, Wien's displacement law states that the spectral radiance of black b
unit wavelength, peaks at the wavelength λ_{max} given by:
 $\lambda_{max} = \frac{b}{T}$

where T is the absolute temperature in degrees kelvin. b is a con where T is the absolute temperature in degrees kelvin. *b* is a constant of proportionality called

Wien's displacement constant, equal to 2.8977721(26)×10⁻³ mK.¹¹¹, or more conveniently to

obtain wavelength in micro Wien's displacement constant, equal to 2.8977721(26)×10⁻³ mK.^[1], or more conveniently to
obtain wavelength in microns, b=2900 µm K.
If one is considering the peak of black body emission per unit frequency r per propo If one is considering the peak of black body emission per unit frequency r per proportional
bandwidth, one must use a different proportionality constant. However, the form of the law remains
the same: the peak wavelength

A blackbody is a hypothetical, ideal radiator. It absorbs and reemits the entire energy incident upon it.Total energy emitted by a black body varies with temperature as given in Eq. 4. The total

In addition to the total energy, the spectral distribution also varies with the temperature. Fig. The figure represents the Stefan-Boltzmann's law graphically. As the temperature increases, area the same: the peak wavelength is inversely proportional to temperature (or the peak frequency is directly proportional to temperature). Wicn's displacement law may be referred to as "Wien's law", a term which is also used

explained by the Wien's displacement law. It states that the dominant wavelength at

RADIATION SOURCES

Remote sensing involves the use of various technologies to gather information about the Earth's surface and atmosphere from a distance. Radiation sources are crucial components in remote sensing, as they emit or reflect electromagnetic radiation that can be detected by sensors to gather information about the Earth's features and properties. Here are some common radiation sources used in remote sensing.