4.2 ERROR DETECTION AND CORRECTION CODES

We know that the bits 0 and 1 corresponding to two different range of analog voltages. So, during transmission of binary data from one system to the other, the noise may also be added. Due to this, there may be errors in the received data at other system.

That means a bit 0 may change to 1 or a bit 1 may change to 0 . We can't avoid the interference of noise. But, we can get back the original data first by detecting whether any errors present and then correcting those errors. For this purpose, we can use the following codes.

- Error detection codes
- Error correction codes

Error detection codes - are used to detect the errors present in the received data bit stream. These codes contain some bits, which are included appended to the original bit stream. These codes detect the error, if it is occurred during transmission of the original data bit stream. Example - Parity code, Hamming code.

Error correction codes - are used to correct the errors present in the received data bit stream so that, we will get the original data. Error correction codes also use the similar strategy of error detection codes. Example - Hamming code.

Therefore, to detect and correct the errors, additional bits are appended to the data bits at the time of transmission.

Parity Code

It is easy to include append one parity bit either to the left of MSB or to the right of LSB of original bit stream. There are two types of parity codes, namely even parity code and odd parity code based on the type of parity being chosen.

Even Parity Code The value of even parity bit should be zero, if even number of ones present in the binary code. Otherwise, it should be one. So that, even number of ones present in even parity code. Even parity code contains the data bits and even parity bit.

The following table shows the even parity codes corresponding to each 3-bit binary code. Here, the even parity bit is included to the right of LSB of binary code.

Binary Code	Even Parity bit	Even Parity Code
000	0	0000
001	1	0011
010	0	0101
011	1	0110
100	0	1001
101	0	1010
110	1	
11		

Here, the number of bits present in the even parity codes is 4 . So, the possible even number of ones in these even parity codes are $0,2 \& 4$.

- If the other system receives one of these even parity codes, then there is no error in the received data. The bits other than even parity bit are same as that of binary code.
- If the other system receives other than even parity codes, then there will be an errors in the received data. In this case, we can't predict the original binary code because we don't know the bit positions of error.

Therefore, even parity bit is useful only for detection of error in the received parity code. But, it is not sufficient to correct the error.

Odd Parity Code

The value of odd parity bit should be zero, if odd number of ones present in the binary code. Otherwise, it should be one. So that, odd number of ones present in odd parity code. Odd parity code contains the data bits and odd parity bit.

The following table shows the odd parity codes corresponding to each 3-bit binary code. Here, the odd parity bit is included to the right of LSB of binary code.

Binary Code	Odd Parity bit	Odd Parity Code
000	1	0001
001	0	0010
010	0	0100
011	1	0111
100	0	1000
101	1	1011
110	1	

Here, the number of bits present in the odd parity codes is 4 . So, the possible odd number of ones in these odd parity codes are $1 \& 3$.

- If the other system receives one of these odd parity codes, then there is no error in the received data. The bits other than odd parity bit are same as that of binary code.
- If the other system receives other than odd parity codes, then there is an errors in the received data. In this case, we can't predict the original binary code because we don't know the bit positions of error.

Therefore, odd parity bit is useful only for detection of error in the received parity code. But, it is not sufficient to correct the error.

Hamming Code

Hamming code is useful for both detection and correction of error present in the received data. This code uses multiple parity bits and we have to place these parity bits in the positions of powers of 2.

The minimum value of ' \mathbf{k} ' for which the following relation is correct valid is nothing but the required number of parity bits.
$2 \mathrm{k} \geq \mathrm{n}+\mathrm{k}+12 \mathrm{k} \geq \mathrm{n}+\mathrm{k}+1$

Where,
' n ' is the number of bits in the binary code information
' k ' is the number of parity bits
Therefore, the number of bits in the Hamming code is equal to $n+k$.
Let the Hamming code is $\mathrm{bn}+\mathrm{kbn}+\mathrm{k}-1 \ldots . . \mathrm{b} 3 \mathrm{~b} 2 \mathrm{~b} 1 \mathrm{bn}+\mathrm{kbn}+\mathrm{k}-1 \ldots . . \mathrm{b} 3 \mathrm{~b} 2 \mathrm{~b} 1$ \& parity bits $\mathrm{pk}, \mathrm{pk}-1, \ldots . \mathrm{p} 1 \mathrm{pk}, \mathrm{pk}-1, \ldots . \mathrm{p} 1$. We can place the ' k ' parity bits in powers of 2 positions only. In remaining bit positions, we can place the ' n ' bits of binary code.

Based on requirement, we can use either even parity or odd parity while forming a Hamming code. But, the same parity technique should be used in order to find whether any error present in the received data.

Follow this procedure for finding parity bits.

- Find the value of $\mathbf{p}_{\mathbf{1}}$, based on the number of ones present in bit positions b_{3}, b_{5}, b_{7} and so on. All these bit positions suffixes in their equivalent binary have ' 1 ' in the place value of 2^{0}.
- Find the value of \mathbf{p}_{2}, based on the number of ones present in bit positions b_{3}, b_{6}, b_{7} and so on. All these bit positions suffixes in their equivalent binary have ' 1 ' in the place value of 2^{1}.
- Find the value of \mathbf{p}_{3}, based on the number of ones present in bit positions b_{5}, b_{6}, b_{7} and so on. All these bit positions suffixes in their equivalent binary have ' 1 ' in the place value of 2^{2}.
- Similarly, find other values of parity bits.

Follow this procedure for finding check bits.

- Find the value of c_{1}, based on the number of ones present in bit positions b_{1}, b_{3}, $\mathrm{b}_{5}, \mathrm{~b}_{7}$ and so on. All these bit positions suffixes in their equivalent binary have ' 1 ' in the place value of 2^{0}.
- Find the value of c_{2}, based on the number of ones present in bit positions b_{2}, b_{3}, $\mathrm{b}_{6}, \mathrm{~b}_{7}$ and so on. All these bit positions suffixes in their equivalent binary have ' 1 ' in the place value of $2{ }^{1}$.
- Find the value of c_{3}, based on the number of ones present in bit positions b_{4}, b_{5}, $\mathrm{b}_{6}, \mathrm{~b}_{7}$ and so on. All these bit positions suffixes in their equivalent binary have ' 1 ' in the place value of 2^{2}.
- Similarly, find other values of check bits.

The decimal equivalent of the check bits in the received data gives the value of bit position, where the error is present. Just complement the value present in that bit position. Therefore, we will get the original binary code after removing parity bits.

