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4.5 GAUSSIAN MIXTURE MODELS AND EXPECTATION MAXIMIZATION 

Gaussian Mixture Models is a "soft" clustering algorithm, where each point probabilistically 

"belongs" to all clusters. This is different than k-means where each point belongs to one cluster. 

 The Gaussian mixture model is a probabilistic model that assumes all the data points are 

generated from a mix of Gaussian distributions with unknown parameters.  

 For example, in modeling human height data, height is typically modeled as a normal 

distribution for each gender with a mean of approximately 5'10" for males: and 55" for 

females. Given only the height data and not the gender assignments for each data point, the 

distribution of all heights would follow the sum of two scaled (different variance) and 

shifted (different mean) normal distributions  

 A model making this assumption is an example of a Gaussian mixture model. 

 Gaussian mixture models do not rigidly classify each and every instance into one class or 

the other. The algorithm attempts to produce K-Gaussian distributions that would take into 

account the entire training space.  

Every point can be associated with one or more distributions. Consequently, the deterministic 

factor would be the probability that each point belongs to a certain Gaussian distribution. 

GMMs have a variety of real-world applications. Some of them are listed below. 

a) Used for signal processing  

b) Used for customer churn analysis 

c) Used for language identification 

d) Used in video game industry 

e) Genre classification of songs 

4.5.1 Expectation-maximization 

In Gaussian mixture models, an expectation-maximization method is a powerful tool for estimating 

the parameters of a Gaussian mixture model. The expectation is termed E and maximization is 

termed M. 
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 Expectation is used to find the Gaussian parameters which are used to represent each 

component of gaussian mixture models. Maximization is termed M and it is involved in 

determining whether new data points can be added or not. 

 The Expectation-Maximization (EM) algorithm is used in maximum likelihood estimation 

where the problem involves two sets of random variables of which one, X, is observable 

and the other, Z, is hidden. 

 The goal of the algorithm is to find the parameter vector Ф that maximizes the likelihood 

of the observed values of X, L(Ф/ X). 

 But in cases where this is not feasible, we associate the extra hidden variables Z and express 

the underlying model using both, to maximize the likelihood of the joint distribution of X 

and Z, the complete likelihood LC(Ф / X,Z). 

 Expectation-maximization (EM) is an iterative method used to find maximum likelihood 

estimates of parameters in probabilistic models, where the model depends on unobserved, 

also called latent, variables. 

 EM alternates between performing an expectation (E) step, which computes an expectation 

of the likelihood by including the latent variables as if they were observed, and 

maximization (M) step, which computes the maximum likelihood estimates of the 

parameters by maximizing the expected likelihood found in the E step. 

 The parameters found on the M step are then used to start another E step, and the process 

is repeated until some criterion is satisfied. EM is frequently used for data clustering like 

for example in Gaussian mixtures. 

 In the Expectation step, find the expected values of the latent variables (here you need to 

use the current parameter values) 

 In the Maximization step, first plug in the expected values of the latent variables in the 

log-likelihood of the augmented data. Then maximize this log-likelihood to reevaluate the 

parameters  

 Expectation-Maximization (EM) is a technique used in point estimation. Given a set of 

observable variables X and unknown (latent) variables Z we want to estimate parameters 

ѳ in a model. 
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 The expectation maximization (EM) algorithm is a widely used maximum likeli-hood 

estimation procedure for statistical models when the values of some of the variables in the 

model are not observed 

 The EM algorithm is an elegant and powerful method for finding the maximum likelihood 

of models with hidden variables. The key concept in the EM algorithm is that it iterates 

between the expectation step (E-step) and maximization step (M-step) until convergence. 

 In the E-step, the algorithm estimates the posterior distribution of the hidden variables Q 

given the observed data and the current parameter settings, and in the M-step the algorithm 

calculates the ML parameter settings with Q fixed. 

 At the end of each iteration the lower bound on the likelihood is optimized for the given 

parameter setting (M-step) and the likelihood is set to that bound (E-step), which 

guarantees an increase in the likelihood and convergence to a local maximum, or global 

maximum if the likelihood function is unimodal.  

 Generally, EM works best when the fraction of missing information is small and the 

dimensionality of the data is not too large. EM can require many iterations, and higher 

dimensionality can dramatically slow down the E-step. 

 EM is useful for several reasons: conceptual simplicity, ease of implementation, and the 

fact that each iteration improves l(ѳ). The rate of convergence on the first few steps is 

typically quite good, but can become excruciatingly slow as you approach local optima. 

 Sometimes the M-step is a constrained maximization, which means that there are 

constraints on valid solutions not encoded in the function itself. 

 Expectation maximization is an effective technique that is often used in data analysis to 

manage missing data. Indeed, expectation maximization overcomes some of the limitations 

of other techniques, such as mean substitution or regression substitution. These alternative 

techniques generate biased estimates and, specifically, underestimate the standard errors. 

Expectation maximization overcomes this problem. 

 


