ROHININ COLLEGE OF ENGINEERING AND TECHNOLOGY

 Approved by AICTE \& Affliated to anna university Accredited with A^{+}grade by NAAC DEPARTMENT OF MECHANICAL ENGINEERINGNAME OF THE SUBJECT: ENGINEERING MECHANICS
SUBJECT CODE : ME3351
REGULATION 2021
UNIT V: DYNAMICS OF PARTICLES

DYNAMIC OF PARTICLES

Newton's Law Of Motion

Newton"s Law
The rate of change of momentum is directly proportional to the resultant force.

The Resultant Force acting in the direction of equal to the product of mass and the acceleration in the direction of resultant Force.

$$
\sum F=m a
$$

$$
\begin{aligned}
& \mathrm{m}=\text { mass } \\
& \mathrm{a}=\text { acceleration }
\end{aligned}
$$

D' Alembert' Principle:

States that the inertia forces and couples, and the external forces and torques on a body together give statical equilibrium.

Inertia is a property of mater by virture of which a body resists ay change in velocity

$$
F_{I}=-m g
$$

Problem: 1
What horizontal force is needed to give the 50 kg block shown in fig. With an acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$ up the 20° plane. Assume the coefficient of friction b / w the block and plane is 0.25 .

Given:
Weight of block $\mathrm{W}=50 \mathrm{~kg}=50 \times 9.81=490.5 \mathrm{~N}$
Acceleration $\mathrm{a}=3 \mathrm{~m} / \mathrm{s}^{2}$
Coefficient of friction $=0.25$
To find:
Force on the block P

Soln:

Free body diagram

$\sum F X=m a$
$\mathrm{P} \cos 20-M_{X R N}-\mathrm{w} \cos 70=50 \times 3$

$$
\begin{equation*}
P \cos 20-0.25 \times R_{N}-490.5 \times \cos 70=150 \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \sum F Y=0 \\
& \quad R_{N}-p \sin 20-w \sin 70=0 \\
& \quad R_{N}-p \sin 20-490.5 \sin 70=0 \\
& \quad R_{-} N-p \sin 20-490.5 \sin 70=0 \\
& \quad R N=0.34 P-460.91 \\
& \mathrm{R}_{N} \text { value in Eqn }(1) \\
& P \cos 20-0.25[0.34 \times p-490.91]-490.5 \times \cos 70=150 \\
& 0.93 p-0.085 p+122.72-167.76=150 \\
& 0.845 P-45.04=150 \\
& 0.845 P=150+45.04 \\
& 0.845 P=195.04 \\
& P=\frac{195.04}{0.845} \\
& P=230.81 N
\end{aligned}
$$

Problem:2

A block weighting 1 KN , rest on a horizontal plane as shown in fig. Find the force P required to give an acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$ to right. Take the coefficient of friction $\mathrm{M}_{\mathrm{K}}=0.25$.

$$
P=750.056 \mathrm{~N}
$$

Problem:3

Two blocks weighting 300 N and 450 N are connected by a rope as shown fig. With what acceleration the heavier block comes down, and what is the tension of the rope. Pulley is frictionless and weight less.

soln :
Free body diagram

$\sum F_{X}=m a$
$\mathrm{T}-300=\frac{300}{9.81} \times a$
$T-300=30.58 \times a----(1)$

$$
\begin{aligned}
& \sum F_{Y}=\mathrm{m} \mathrm{a} \\
& 450-T=\frac{450}{9.81} \times a----(1)
\end{aligned}
$$

Solving Eqn (1) \& (2)
$T-300=30.58 \times a$
$\underline{450-T=45.87 \times a}$
$150=76.45 \times a$
$a=\frac{150}{76.45}$
$a=1.962 \mathrm{~m} / \mathrm{s} 2$

