
 Rohini College of Engineering & Technology

 AD3301 Data Exploration & Visualization

Transformation Techniques in Bivariate Analysis

1. Log Transformation:
o Useful when data has exponential growth or wide variation in scale.

o Converts multiplicative relationships into additive ones.

Formula:

y′= log(y)

where y′ is the transformed variable and y is the original variable.

2. Square Root Transformation:

o Applied when the data has a strong right-skew (positive skew).
o Reduces the effect of large values and compresses the data distribution.

Formula:

y′=sqrt(y)

where y′ is the transformed variable and y is the original variable.

3. Box-Cox Transformation:
o A family of transformations that can be used to stabilize variance and make data

more normally distributed.
o It includes a parameter λ\lambdaλ which determines the type of transformation

applied.

Formula:

where y′ is the transformed variable, y is the original variable, and λ lambda is a

parameter that is estimated.

4. Z-Score Normalization:
o Standardizes the variables by subtracting the mean and dividing by the standard

deviation.

o Useful when variables have different scales and need to be compared directly.

 Rohini College of Engineering & Technology

 AD3301 Data Exploration & Visualization

Formula:

z=(y−μ)/σ

where z is the transformed variable, y is the original variable, μ is the mean, and σ is the
standard deviation.

5. Power Transformation:
o Similar to Box-Cox but allows a more general transformation where the exponent

ppp can be any real number.
o Can be used to stabilize variance and make distributions more normal.

Formula:

y′=yp

where y′ is the transformed variable, y is the original variable, and p is the exponent (can
be chosen based on the data).

6. Reciprocal Transformation:

o Takes the reciprocal of the variable to transform it. This is often used to handle
extreme positive skewness.

Formula:

Y’ = 1/y

where y′ is the transformed variable and y is the original variable.

Example

We will consider a dataset where we have two variables: Study Hours and Test Scores. Let's
apply transformations to these variables.

1. Example Dataset

import pandas as pd

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Sample dataset

data = {
 'Study_Hours': [2, 3, 5, 1, 4, 6, 3, 7, 8, 10],
 'Scores': [50, 55, 70, 40, 65, 80, 60, 85, 90, 100]

}

 Rohini College of Engineering & Technology

 AD3301 Data Exploration & Visualization

Create DataFrame
df = pd.DataFrame(data)

Plotting original data

plt.figure(figsize=(8, 6))
sns.scatterplot(x='Study_Hours', y='Scores', data=df)
plt.title("Scatterplot: Study Hours vs Test Scores (Original Data)")

plt.xlabel("Study Hours")
plt.ylabel("Scores")

plt.grid(alpha=0.4)
plt.show()

2. Applying Log Transformation

Apply Log Transformation
df['Log_Study_Hours'] = np.log(df['Study_Hours'])

df['Log_Scores'] = np.log(df['Scores'])

Plot transformed data

plt.figure(figsize=(8, 6))
sns.scatterplot(x='Log_Study_Hours', y='Log_Scores', data=df)

plt.title("Log Transformation: Study Hours vs Test Scores")
plt.xlabel("Log of Study Hours")
plt.ylabel("Log of Scores")

plt.grid(alpha=0.4)
plt.show()

Explanation:

 Log Transformation: Reduces the wide range of data and compresses large values,

making the relationship more linear.

3. Apply Z-Score Normalization

Apply Z-Score Normalization
df['Z_Study_Hours'] = (df['Study_Hours'] - df['Study_Hours'].mean()) / df['Study_Hours'].std()
df['Z_Scores'] = (df['Scores'] - df['Scores'].mean()) / df['Scores'].std()

Plot normalized data

plt.figure(figsize=(8, 6))
sns.scatterplot(x='Z_Study_Hours', y='Z_Scores', data=df)
plt.title("Z-Score Normalization: Study Hours vs Test Scores")

plt.xlabel("Z-Score of Study Hours")
plt.ylabel("Z-Score of Scores")

plt.grid(alpha=0.4)
plt.show()

 Rohini College of Engineering & Technology

 AD3301 Data Exploration & Visualization

Explanation:

 Z-Score Normalization: Standardizes both Study_Hours and Scores to have a mean of 0
and a standard deviation of 1. This is useful when the scales of the variables are different.

4. Apply Power Transformation (e.g., Square Root)

Apply Square Root Transformation
df['Sqrt_Study_Hours'] = np.sqrt(df['Study_Hours'])

df['Sqrt_Scores'] = np.sqrt(df['Scores'])

Plot transformed data

plt.figure(figsize=(8, 6))
sns.scatterplot(x='Sqrt_Study_Hours', y='Sqrt_Scores', data=df)

plt.title("Square Root Transformation: Study Hours vs Test Scores")
plt.xlabel("Square Root of Study Hours")
plt.ylabel("Square Root of Scores")

plt.grid(alpha=0.4)
plt.show()

 Square Root Transformation: This transformation reduces skewness and compresses
the range of the data.

 Log Transformation: Useful when dealing with exponential growth or large ranges.

 Z-Score Normalization: Standardizes data for comparison.
 Power/Square Root Transformation: Stabilizes variance and handles skewed data.
 Box-Cox Transformation: A generalized transformation that can handle different types

of data distributions.

When to Use Transformations in Bivariate Analysis

1. Improving Linearity: When the relationship between two variables is non-linear,
transformations like log or square root can help.

2. Stabilizing Variance: If the variance of one or both variables increases as the value of

the variable increases (heteroscedasticity), transformations can stabilize it.
3. Handling Skewed Data: For positively or negatively skewed data, transformations such

as log or square root can help normalize the distribution.

