Kirchoff's Second Law - The Voltage Law, (KVL)

'In any closed loop network, the total voltage around the loop is equal to the sum of all the voltage drops within the same loop" which is also equal to zero. In other words the algebraic sum of all voltages within the loop must be equal to zero. This idea by Kirchoff is known as the Conservation of Energy.

Starting at any point in the loop continue in the same direction noting the direction of all the voltage drops, either positive or negative, and returning back to the same starting point. It is important to maintain the same direction either clockwise or anti-clockwise or the final voltage sum will not be equal to zero.

We can use Kirchoff's voltage law when analyzing series circuits.

Problem: 1

Find the current flowing in the 40Ω Resistor,

Solution:

The circuit has 3 branches, 2 nodes (A and B) and 2 independent loops.

Using Kirchoff's Current Law, KCL the equations are given as;
At node $\mathrm{A}: \mathrm{I}_{1}+\mathrm{I}_{2}=\mathrm{I}_{3}$
At node $\mathrm{B}: \mathrm{I}_{3}=\mathrm{I}_{1}+\mathrm{I}_{2}$

Using Kirchoff's Voltage Law, KVL the equations are given as;
Loop 1 is given as: $10=\mathrm{R}_{1} \times \mathrm{I}_{1}+\mathrm{R}_{3} \times \mathrm{I}_{3}=10 \mathrm{I}_{1}+40 \mathrm{I}_{3}$
Loop 2 is given as: $20=\mathrm{R}_{2} \times \mathrm{I}_{2}+\mathrm{R}_{3} \times \mathrm{I}_{3}=20 \mathrm{I}_{2}+40 \mathrm{I}_{3}$
Loop 3 is given as: $10-20=10 \mathrm{I}_{1}-20 \mathrm{I}_{2}$

As $I 3$ is the sum of $I_{1}+I_{2}$ we can rewrite the equations as;
Eq. No 1: $10=10 \mathrm{I}_{1}+40\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)=50 \mathrm{I}_{1}+40 \mathrm{I}_{2}$
Eq.No 2: $20=20 \mathrm{I}_{1}+40\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)=40 \mathrm{I}_{1}+60 \mathrm{I}_{2}$
We now have two "Simultaneous Equations" that can be reduced to give us the value of both I_{1} and I_{2}

Substitution of I_{1} in terms of I_{2} gives us the value of I_{1} as -0.143 Amps

Substitution of I_{2} in terms of I_{1} gives us the value of I_{2} as +0.429 Amps
As: $\mathrm{I}_{3}=\mathrm{I}_{1}+\mathrm{I}_{2}$
The current flowing in resistor R_{3} is given as: $-0.143+0.429=0.286 \mathrm{Amps}$ and the voltage across the resistor R_{3} is given as : $0.286 \times 40=11.44$ volts

Resistors in series and parallel circuits:

Series circuits:

Figure shows three resistors R1, R2 and R3 connected end to end, i.e. in series, with a battery source of V volts. Since the circuit is closed a current I will flow and the p.d. across each resistor may be determined from the voltmeter readings V 1, V2 and V3

In a series circuit

(a) the current I is the same in all parts of the circuit and hence the same reading is found on each of the two ammeters shown, and
(b)the sum of the voltages $\mathrm{V} 1, \mathrm{~V} 2$ and V 3 is equal to the total applied voltage, V , i.e.
$\mathrm{V}=\mathrm{V} 1+\mathrm{V} 2+\mathrm{V} 3$
From Ohm's law:
$\mathrm{V} 1=\mathrm{IR} 1, \mathrm{~V} 2=\mathrm{IR} 2, \mathrm{~V} 3=\mathrm{IR} 3$ and $\mathrm{V}=\mathrm{IR}$ where R is the total circuit resistance. Since $\mathrm{V}=\mathrm{V} 1$ $+\mathrm{V} 2+\mathrm{V} 3$
then IR $=\mathrm{IR} 1+\mathrm{IR} 2+\mathrm{IR} 3$ Dividing throughout by I gives $\mathrm{R}=\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3$
Thus for a series circuit, the total resistance is obtained by adding together the values of the separate resistances.

Problem 1: For the circuit shown in Figure 5.2, determine (a) the battery voltage V, (b) the total resistance of the circuit, and (c) the values of resistance of resistors R1, R2 and R3, given that the p.d.'sR1, R 2 acrossandR 3 are $5 \mathrm{~V}, 2 \mathrm{~V}$ and 6 V respectively.

(a) Battery voltage $\mathrm{V}=\mathrm{V} 1+\mathrm{V} 2+\mathrm{V} 3=5+2+6=13 \mathrm{~V}$
(b)Total circuit resistance $\mathrm{R}=\mathrm{V} / \mathrm{I}$

$$
=13 / 4=3.25 \Omega
$$

(c) Resistance R1 = V1/ I

$$
=5 / 4
$$

$=1.25 \Omega$ Resistance $\mathrm{R} 2=\mathrm{V} 2 / \mathrm{I}$

$$
=2 / 4=0.5 \Omega
$$

Resistance R3 $=\mathrm{V} 3 / \mathrm{I}=6 / 4=1.5 \Omega$
Problem 2. For the circuit shown in Figure determine the p.d. across resistor R3. If the total resistance of the circuit is 100 , determine the current flowing through resistor $R 1$. Find also the value of resistor $R 2$.

P.d. across R3, V3 $=25-10-4=11 \mathrm{~V}$ Current $\mathrm{I}=\mathrm{V} / \mathrm{R}$

$$
=25 / 100
$$

$=0.25 \mathrm{~A}$, which is the current flowing in each resistor Resistance $\mathrm{R} 2=\mathrm{V} 2 / \mathrm{I}$

$$
=4 / 0.25=16 \Omega
$$

Problem 3: A 12 V battery is connected in a circuit having three series-connected resistors having resistances of $4 \Omega, 9 \Omega$ and 11Ω. Determine the current flowing through, and the p.d. across the 9Ω resistor. Find also the power dissipated in the 11Ω resistor.

Total resistance $\mathrm{R}=4+9+11=24 \Omega$ Current $\mathrm{I}=\mathrm{V} / \mathrm{R}$

$$
=12 / 24
$$

$=0.5 \mathrm{~A}$, which is the current in the 9Ω resistor. P.d. across the $9 _$resistor, $V 1=I \times 9=$ 0.5×9

$$
=4.5 \mathrm{~V}
$$

Power dissipated in the 11Ω resistor, $P=I 2 R=0.52(11)$

$$
\begin{aligned}
& =0.25(11) \\
& =2.75 \mathrm{~W}
\end{aligned}
$$

8. PARALLEL NETWORKS:

Problem 1: Figure shows three resistors, R1, R2 and R3 connected across each other, i.e. in parallel, across a battery source
of V volts.

In a parallel circuit:

(a) the sum of the currents I1, I2 and I3 is equal to the total circuit current, I, i.e. $\mathrm{I}=\mathrm{I} 1+\mathrm{I} 2+\mathrm{I} 3$, and
the source p.d., V volts, is the same across each of the
From Ohm's law:
$\mathrm{I} 1=\mathrm{V} / \mathrm{R} 1$
, $\mathrm{I} 2=\mathrm{V} / \mathrm{R} 2$
, $\mathrm{I} 3=\mathrm{V} / \mathrm{R} 3$ and $\mathrm{I}=\mathrm{V} / \mathrm{R}$
where R is the total circuit resistance. Since $\mathrm{I}=\mathrm{I} 1+\mathrm{I} 2+\mathrm{I} 3$
then
$\mathrm{V} / \mathrm{R}=\mathrm{V} / \mathrm{R} 1+\mathrm{V} / \mathrm{R} 2+\mathrm{V} / \mathrm{R} 3$ Dividing throughout by V gives:

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

This equation must be used when finding the total resistance R of a parallel circuit. For the special case of two resistors in parallel

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Problem 2: For the circuit shown in Figure, determine (a) the reading on the ammeter, and (b) the value of resistor R2.

P.d. across R1 is the same as the supply voltage V .

Hence supply voltage, $\mathrm{V}=8 \times 5=40 \mathrm{~V}$
(a) Reading on ammeter, $\mathrm{I}=\mathrm{V}$ R3 $=40 / 20=2 \mathrm{~A}$

Current flowing through R2 $=11-8-2=1 \mathrm{~A}$
Hence, R2 $=\mathrm{V} / \mathrm{I} 2=40 / 1=40 \Omega$

(a) The total circuit resistance R is given by $1 / R=1 / R 1+1 / R 2=1 / 3+1 / 6$
$1 / \mathrm{R}=2+1 / 6=3 / 6$ Hence, $\mathrm{R}=6 / 3=2 \Omega$
(b) Current in the 3Ω resistance, $\mathrm{I} 1=\mathrm{V}$ R1 $=12 / 3=4 \mathrm{~A}$

Problem 3: For the circuit shown in Figure find (a) the value of the supply voltage V and (b) the value of current I.

(a) P.d. across 20Ω resistor $=\mathrm{I} 2 \mathrm{R} 2=3 \times 20=60 \mathrm{~V}$, hence supply voltage $\mathrm{V}=60 \mathrm{~V}$ since the circuit is connected in parallel.
(b)Current $\mathrm{I} 1=\mathrm{V} / \mathrm{R} 1=60 / 10=6 \mathrm{~A} ; \mathrm{I} 2=3 \mathrm{~A}$
$\mathrm{I} 3=\mathrm{V} / \mathrm{R} 3=60 / 60=1 \mathrm{~A}$
Current $\mathrm{I}=\mathrm{I} 1+\mathrm{I} 2+\mathrm{I} 3$ and hence $\mathrm{I}=6+3+1=10$ A Alternatively,
$1 / \mathrm{R}=1 / 60+1 / 20+1 / 10=1+3+6 / 60=10 / 60$ Hence total resistance $\mathrm{R}=6010=6 \Omega$ Current $\mathrm{I}=$ $\mathrm{V} / \mathrm{R}=60 / 6=10 \mathrm{~A}$

Problem 4: Find the equivalent resistance for the circuit shown in Figure

$R 3, R 4$ and $R 5$ are connected in parallel and their equivalent resistance R is given by: $1 / R=1 / 3+$ $1 / 6+1 / 18=6+3+1 / 18=10 / 18$

Hence $R=18 / 10=1.8 \Omega$
The circuit is now equivalent to four resistors in series and the equivalent circuit resistance $=1+2.2+1.8+4=9 \Omega$

