
CS3551 DISTRIBUTED COMPUTING 

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

 

2.5 Causal Order (CO) 

An optimal CO algorithm stores in local message logs and propagates on messages, information 

of the form d is a destination of M about a messageM sent in the causal past, as long as and 

only as long as: 

 

Propagation Constraint I: it is not known that the message M is delivered to d. 

 
Propagation Constraint II: it is not known that a message has been sent to d in the causal 

future of Send(M), and hence it is not guaranteed using a reasoning based on transitivity that 

the message M will be delivered to d in CO. 

 

 

Fig 2.6: Conditions for causal ordering 

The Propagation Constraints also imply that if either (I) or (II) is false, the information 

“d ∈ M.Dests” must not be stored or propagated, even to remember that (I) or (II) has been 

falsified: 
▪ not in the causal future of Deliverd(M1, a) 

▪ not in the causal future of e k, c where d ∈Mk,cDests and there is no other 

message sent causally between Mi,a and Mk, c to the same destination d. 

Information about messages: 

(i) not known to be delivered 

(ii) not guaranteed to be delivered in CO, is explicitly tracked by the algorithm using (source, 

timestamp, destination) information. 

Information about messages already delivered and messages guaranteed to be delivered in 

CO is implicitly tracked without storing or propagating it, and is derived from the explicit 

information. The algorithm for the send and receive operations is given in Fig. 2.7 a) and b). 

Procedure SND is executed atomically. Procedure RCV is executed atomically except for a 

possible interruptionin line 2a where a non-blocking wait is required to meet the Delivery 

Condition. 



CS3551 DISTRIBUTED COMPUTING 

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

 

 
 

Fig 2.7 a) Send algorithm by Kshemkalyani–Singhal to optimally implement causal 

ordering 

 

Fig 2.7 b) Receive algorithm by Kshemkalyani–Singhal to optimally implement causal 

ordering 

 

The data structures maintained are sorted row–major and then column–major: 

1. Explicit tracking: 

▪ Tracking of (source, timestamp, destination) information for messages (i) not known to be 

delivered and (ii) not guaranteed tobe delivered in CO, is done explicitly using the I.Dests 



CS3551 DISTRIBUTED COMPUTING 

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

 

field of entries inlocal logs at nodes and o.Dests field of entries in messages. 

▪ Sets li,aDestsand oi,a. Dests contain explicit information of destinations to which Mi,ais not 

guaranteed to be delivered in CO and is not known to be delivered. 

▪ The information about d ∈Mi,a .Destsis propagated up to the earliestevents on all causal 

paths from (i, a) at which it is known that Mi,a isdelivered to d or is guaranteed to be 

delivered to d in CO. 

2. Implicit tracking: 

▪ Tracking of messages that are either (i) already delivered, or (ii) guaranteed to be 

delivered in CO, is performed implicitly. 

▪ The information about messages (i) already delivered or (ii) guaranteed tobe delivered 

in CO is deleted and not propagated because it is redundantas far as enforcing CO is 

concerned. 

▪ It is useful in determiningwhat information that is being carried in other messages and 

is being storedin logs at other nodes has become redundant and thus can be purged. 

▪ Thesemantics are implicitly stored and propagated. This information about messages 

that are (i) already delivered or (ii) guaranteed to be delivered in CO is tracked without 

explicitly storing it. 

▪ The algorithm derives it from the existing explicit information about messages (i) not 

known to be delivered and (ii) not guaranteed to be delivered in CO, by examining only 

oi,aDests or li,aDests, which is a part of the explicit information. 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.8: Illustration of propagation constraints 

Multicasts M5,1and M4,1 

Message M5,1 sent to processes P4 and P6 contains the piggybacked information M5,1. 

Dest= {P4, P6}. Additionally, at the send event (5, 1), the information M5,1.Dests = {P4,P6} 

is also inserted in the local log Log5. When M5,1 is delivered to P6, the (new) piggybacked 

information P4 ∈ M5,1 .Dests is stored in Log6 as M5,1.Dests ={P4} information about P6 ∈ 
M5,1.Dests which was needed for routing, must not be stored in Log6 because of constraint I. In 

the same way when M5,1 is delivered to process P4 

at event (4, 1), only the new piggybacked information P6 ∈ M5,1 .Dests is inserted in Log4 as 

M5,1.Dests =P6which is later propagated duringmulticast M4,2. 
 

Multicast M4,3 

At event (4, 3), the information P6 ∈M5,1.Dests in Log4 is propagated onmulticast M4,3only to 

process P6 to ensure causal delivery using the DeliveryCondition. The piggybacked 



CS3551 DISTRIBUTED COMPUTING 

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

 

information on message M4,3sent to process P3must not contain this information because of 

constraint II. As long as any future message sent to P6 is delivered in causal order w.r.t. M4,3sent 

to P6, it will also be delivered in causal order w.r.t. M5,1. And as M5,1 is already delivered to 

P4, the information M5,1Dests = ∅ is piggybacked on M4,3 sent to P 3. Similarly, the information 

P6 ∈ M5,1Dests must be deleted from Log4 as it will no longer be needed, because of constraint 

II. M5,1Dests = ∅ is stored in Log4 to remember that M5,1 has been delivered or is guaranteed 

to be delivered in causal order to all its destinations. 
 

Learning implicit information at P2 and P3 

When message M4,2is received by processes P2 and P3, they insert the (new) piggybacked 

information in their local logs, as information M5,1.Dests = P6. They both continue to store 

this in Log2 and Log3 and propagate this information on multicasts until they learn at events 

(2, 4) and (3, 2) on receipt of messages M3,3and M4,3, respectively, that any future message is 

expected to be delivered in causal order to process P6, w.r.t. M5,1sent toP6. Hence by constraint 

II, this information must be deleted from Log2 andLog3. The flow of events is given by; 

• When M4,3 with piggybacked information M5,1Dests = ∅ is received byP3at (3, 2), this 

is inferred to be valid current implicit information aboutmulticast M5,1because the log 

Log3 already contains explicit informationP6 ∈M5,1.Dests about that multicast. 

Therefore, the explicit informationin Log3 is inferred to be old and must be deleted to 

achieve optimality. M5,1Dests is set to ∅ in Log3. 

• The logic by which P2 learns this implicit knowledge on the arrival of M3,3is identical. 

Processing at P6 

When message M5,1 is delivered to P6, only M5,1.Dests = P4 is added to Log6. Further, P6 

propagates only M5,1.Dests = P4 on message M6,2, and this conveys the current implicit 

information M5,1 has been delivered to P6 by its very absence in the explicit information. 

• When the information P6 ∈ M5,1Dests arrives on M4,3, piggybacked as M5,1 .Dests 

= P6 it is used only to ensure causal delivery of M4,3 using the Delivery Condition, 

and is not inserted in Log6 (constraint I) – further, the presence of M5,1 .Dests = P4 

in Log6 implies the implicit information that M5,1 has already been delivered to 

P6. Also, the absence of P4 in M5,1 .Dests in the explicit piggybacked information 

implies the implicit information that M5,1 has been delivered or is guaranteed to be 

delivered in causal order to P4, and, therefore, M5,1. Dests is set to ∅ in Log6. 

• When the information P6 ∈ M5,1 .Dests arrives on M5,2 piggybacked as M5,1. Dests 

= {P4, P6} it is used only to ensure causal delivery of M4,3 using the Delivery 

Condition, and is not inserted in Log6 because Log6 contains M5,1 .Dests = ∅, 

which gives the implicit information that M5,1 has been delivered or is guaranteed 

to be delivered in causal order to both P4 and P6. 

Processing at P1 

• When M2,2arrives carrying piggybacked information M5,1.Dests = P6 this (new) 

information is inserted in Log1. 

• When M6,2arrives with piggybacked information M5,1.Dests ={P4}, P1learns implicit 

information M5,1has been delivered to P6 by the very absence of explicit information 

P6 ∈ M5,1.Dests in the piggybacked information, and hence marks information P6 ∈ 

M5,1Dests for deletion from Log1. Simultaneously, M5,1Dests = P6 in Log1 implies 

the implicit information that M5,1has been delivered or is guaranteed to be delivered in 

causal order to P4.Thus, P1 also learns that the explicit piggybacked information 

M5,1.Dests = P4 is outdated. M5,1.Dests in Log1 is set to ∅. 



CS3551 DISTRIBUTED COMPUTING 

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

 

• The information “P6 ∈M5,1.Dests piggybacked on M2,3,which arrives at P 1, is 

inferred to be outdated usingthe implicit knowledge derived from M5,1.Dest= ∅” in 

Log1. 

2.6 TOTAL ORDER 
 

 
 

Centralized Algorithm for total ordering 
 

Each process sends the message it wants to broadcast to a centralized process, which 

relays all the messages it receives to every other process over FIFO channels. 
 

 

Complexity: Each message transmission takes two message hops and exactly n messages 

in a system of n processes. 

 
 

Drawbacks: A centralized algorithm has a single point of failure and congestion, and is 

not an elegant solution. 

 
 

Three phase distributed algorithm 

 

Three phases can be seen in both sender and receiver side. 

Sender side 

Phase 1 

• In the first phase, a process multicasts the message M with a locally unique tag and 

the local timestamp to the group members. 
 

Phase 2 

• The sender process awaits a reply from all the group members who respond with a 

tentative proposal for a revised timestamp for that message M. 

• The await call is non-blocking. 

Phase 3 

• The process multicasts the final timestamp to the group. 

For each pair of processes Pi and Pj and for each pair of messages Mx and My that are delivered 

to both the processes, Pi is delivered Mx before My if and only if Pj is delivered Mxbefore My. 



CS3551 DISTRIBUTED COMPUTING 

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

 

 

 

Fig 2.9: Sender side of three phase distributed algorithm 

Receiver Side 

Phase 1 

• The receiver receives the message with a tentative timestamp. It updates the variable 

priority that tracks the highest proposed timestamp, then revises the proposed 

timestamp to the priority, and places the message with its tag and the revised 

timestamp at the tail of the queue temp_Q. In the queue, the entry is marked as 

undeliverable. 

Phase 2 

• The receiver sends the revised timestamp back to the sender. The receiver then waits 

in a non-blocking manner for the final timestamp. 

Phase 3 

• The final timestamp is received from the multicaster. The corresponding message 

entry in temp_Q is identified using the tag, and is marked as deliverable after the 

revised timestamp is overwritten by the final timestamp. 

• The queue is then resorted using the timestamp field of the entries as the key. As the 

queue is already sorted except for the modified entry for the message under 

consideration, that message entry has to be placed in its sorted position in the queue. 

• If the message entry is at the head of the temp_Q, that entry, and all consecutive 

subsequent entries that are also marked as deliverable, are dequeued from temp_Q, 

and enqueued in deliver_Q. 

Complexity 

This algorithm uses three phases, and, to send a message to n − 1 processes, it uses 3(n – 1) 

messages and incurs a delay of three message hops 


