

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Associate Professor/ CSE CS3451-Introduction to Operating System

IV FILE SYSTEM MOUNTING

 The basic idea behind mounting file systems is to combine multiple file systems into one large

tree structure.

 The mount command is given a file system to mount and a mount point (directory) on which to

attach it.

 Once a file system is mounted onto a mount point, any further references to that directory actually

refer to the root of the mounted file system.

 files (or sub-directories) that had stored in the amount point directory prior to mounting the new file system are now hidden

by the mounted file system, and are no longer available. For this reason some systems only allow mounting onto empty

directories.

File systems can only be mounted by root, unless root has previously configured certain filesystems to be

mountable onto certain pre-determined mount points. (E.g. root may allow users to mount floppy

filesystems to /mnt or something like it.) Anyone can run the mount command to see what file systems is

currently mounted.

Filesystems may be mounted read-only, or have other restrictions imposed.

 (a) Existing System (b) Unmounted Volume

Mount point

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Associate Professor/ CSE CS3451-Introduction to Operating System

The traditional Windows OS runs an extended two-tier directory structure, where the first tier of the

structure separates volumes by drive letters, and a tree structure is implemented below that level.

Macintosh runs a similar system, where each new volume that is found is automatically mounted and

added to the desktop when it is found.

More recent Windows systems allow filesystems to be mounted to any directory in the filesystem, much

like UNIX.

File Sharing and Protection:

File Sharing

Multiple Users

On a multi-user system, more information needs to be stored for each file:

o The owner (user) who owns the file, and who can control its access.

o The group of other user IDs that may have some special access to the file.

o What access rights are afforded to the owner (User), the Group, and to the rest of the world (the

universe, a.k.a. Others.)

o Some systems have more complicated access control, allowing or denying specific accesses to

specifically named users or groups.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Associate Professor/ CSE CS3451-Introduction to Operating System

Remote File Systems

The advent of the Internet introduces issues for accessing files stored on remote computers

o The original method was ftp, allowing individual files to be transported across systems as needed.

Ftp can be either account or password controlled, or anonymous, not requiring any user name or

password.

o Various forms of distributed file systems allow remote file systems to be mounted onto a local

directory structure, and accessed using normal file access commands. (The actual files are still

transported across the network as needed, possibly using ftp as the underlying transport mechanism.)

o The WWW has made it easy once again to access files on remote systems without mounting their

filesystems, generally using (anonymous) ftp as the underlying file transport mechanism.

The Client-Server Model

When one computer system remotely mounts a file system that is physically located on another system,

the system which physically owns the files acts as a server, and the system which mounts them is the

client.

User IDs and group IDs must be consistent across both systems for the system to work properly. (I.e. this

is most applicable across multiple computers managed by the same organization, shared by a common

group of users.)

The same computer can be both a client and a server. (E.g. cross-linked file systems.

) There are a number of security concerns involved in this model:

o Servers commonly restrict mount permission to certain trusted systems only. Spoofing (a

computer pretending to be a different computer) is a potential security risk.

o Servers may restrict remote access to read-only.

o Servers restrict which filesystems may be remotely mounted. Generally the information within

those subsystems is limited, relatively public, and protected by frequent backups.

The NFS (Network File System) is a classic example of such a system.

Distributed Information Systems

 The Domain Name System, DNS, provides for a unique naming system across all of the Internet. Domain

names are maintained by the Network Information System, NIS, which unfortunately has several security issues.

NIS+ is a more secure version, but has not yet gained the same widespread acceptance as NIS.

Microsoft's Common Internet File System, CIFS, establishes a network login for each user on a networked

system with shared file access. Older Windows systems used domains, and newer systems (XP, 2000), use

active directories. User names must match across the network for this system to be valid.

A newer approach is the Lightweight Directory-Access Protocol, LDAP, which provides a secure single

sign-on for all users to access all resources on a network.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Associate Professor/ CSE CS3451-Introduction to Operating System

This is a secure system which is gaining in popularity, and which has the maintenance advantage of

combining authorization information in one central location.

Failure Modes

When a local disk file is unavailable, the result is generally known immediately, and is generally non-

recoverable. The only reasonable response is for the response to fail.

However when a remote file is unavailable, there are many possible reasons, and whether or not it is

unrecoverable is not readily apparent. Hence most remote access systems allow for blocking or delayed

response, in the hopes that the remote system (or the network) will come back up eventually.

Consistency Semantics

Consistency Semantics deals with the consistency between the views of shared files on a networked

system. When one user changes the file, when do other users see the changes?

At first glance this appears to have all of the synchronization issues discussed in Chapter 6. Unfortunately

the long delays involved in network operations prohibit the use of atomic operations as discussed in that

chapter.

UNIX Semantics

The UNIX file system uses the following semantics:

o Writes to an open file are immediately visible to any other user who has the file open.

o One implementation uses a shared location pointer, which is adjusted for all sharing

users. The file is associated with a single exclusive physical resource, which may delay some

accesses.

Session Semantics

The Andrew File System, AFS uses the following semantics:

o Writes to an open file are not immediately visible to other users.

o When a file is closed, any change available only to users who open the file at a later time.

According to these semantics, a file can be associated with multiple (possibly different) views. Almost

no constraints are imposed on scheduling accesses. No user is delayed in reading or writing their personal

copy of the file.

AFS file systems may be accessible by systems around the world. Access control is maintained through

(somewhat) complicated access control lists, which may grant access to the entire world (literally) or to

specifically named users accessing the files from specifically named remote environments.

Immutable-Shared-Files Semantics

Under this system, when a file is declared as shared by its creator, it becomes immutable and the name

cannot be re-used for any other resource. Hence it becomes read-only, and shared access is simple.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Associate Professor/ CSE CS3451-Introduction to Operating System

Protection

The processes in an operating system must be protected from one another's activities. To provide such protection,

we can use various mechanisms to ensure that only processes that have gained proper authorization from the

operating system can operate on the files, memory segments, CPU, and other resources of a system.

Goals of Protection

 Obviously to prevent malicious misuse of the system by users or programs. See chapter 15 for a more

thorough coverage of this goal.

 To ensure that each shared resource is used only in accordance with system policies, which may be set either

by system designers or by system administrators.

 To ensure that errant programs cause the minimal amount of damage possible.

 Note that protection systems only provide the mechanisms for enforcing policies and ensuring reliable

systems. It is up to administrators and users to implement those mechanisms effectively.

Principles of Protection

The principle of least privilege dictates that programs, users, and systems be given just enough privileges

to perform their tasks.

This ensures that failures do the least amount of harm and allow the least of harm to be done.

For example, if a program needs special privileges to perform a task, it is better to make it a SGID

program with group ownership of "network" or "backup" or some other pseudo group, rather than SUID

with root ownership. This limits the amount of damage that can occur if something goes wrong.

Typically each user is given their own privilege to modify their own files.

The root account should not be used for normal day to day activities - The System Administrator should

also have an ordinary account, and reserve use of the root account for only those tasks which need the

root privileges.

Domain of Protection

A computer can be viewed as a collection of processes and objects (both HW & SW).

The need to know principle states that a process should only have access to those objects it needs to

accomplish its task, and furthermore only in the modes for which it needs access and only during the time

frame when it needs access.

The modes available for a particular object may depend upon its type.

Domain Structure

A protection domain specifies the resources that a process may access.

Each domain defines a set of objects and the types of operations that may be invoked on each

object. An access right is the ability to execute an operation on an object.

A domain is defined as a set of < object, { access right set } > pairs, as shown below. Note that some

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Associate Professor/ CSE CS3451-Introduction to Operating System

domains may be disjoint while others overlap.

System with three protection domains.

The association between a process and a domain may be static or dynamic.

If the association is static, then the need-to-know principle requires a way of changing the contents of the

domain dynamically. If the association is dynamic, then there needs to be a mechanism for domain

switching. Domains may be realized in different fashions - as users, or as processes, or as procedures.

E.g. if each user corresponds to a domain, then that domain defines the access of that user, and changing domains involves

changing user ID. The model of protection that we have been discussing can be viewed as an access matrix, in which

columns represent different system resources and rows represent different protection domains. Entries within the

matrix indicate what access that domain has to that resource

Access matrix.

Domain switching can be easily supported under this model, simply by providing "switch" access to

other domains:

Access matrix of above Figure with domains as objects.

Types of Access

The following low-level operations are often controlled

Read - View the contents of the file

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Associate Professor/ CSE CS3451-Introduction to Operating System

Write - Change the contents of the file.

Execute - Load the file onto the CPU and follow the instructions contained therein.

Append - Add to the end of an existing file.

Delete - Remove a file from the system.

List -View the name and other attributes of files on the system.

Higher-level operations, such as copy, can generally be performed through combinations of the above.

Access Control

One approach is to have complicated Access Control Lists, ACL, which specify exactly what access

is allowed or denied for specific users or groups.The AFS uses this system for distributed access.

Control is

very finely adjustable, but may be complicated, particularly when the specific users involved are unknown. (

AFS allows some wild cards, so for example all users on a certain remote system may be trusted, or a given

username may be trusted when accessing from any remote system.)

UNIX uses a set of 9 access control bits, in three groups of three. These correspond to R, W, and X

permissions for each of the Owner, Group, and Others. (See "man chmod" for full details.) The RWX

bits control the following privileges for ordinary files and directories:

bit Files Directories

R Read (view)

file contents.

Read directory contents. Required to get a listing of the directory.

W

Write

(change) file

contents.

Change directory contents. Required to create or delete files.

X

Execute file

contents as a

program.

Access detailed directory information. Required to get a long

listing, or to access any specific file in the directory. Note that if a

user has X but not R permissions on a directory, they can still

access specific files, but only if they already know the name of the

file they are trying to access.

File System Structure

Hard disks have two important properties that make them suitable for secondary storage of files in file

systems: (1) Blocks of data can be rewritten in place, and (2) they are direct access, allowing any block

of data to be accessed with only (relatively) minor movements of the disk heads and rotational latency.

Disks are usually accessed in physical blocks, rather than a byte at a time. Block sizes may range from

512 bytes to 4K or larger.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Associate Professor/ CSE CS3451-Introduction to Operating System

File systems organize storage on disk drives, and can be viewed as a layered design:

o At the lowest layer are the physical devices, consisting of the magnetic media, motors & controls,

and the electronics connected to them and controlling them. Modern disk put more and more of the

electronic controls directly on the disk drive itself, leaving relatively little work for the disk controller

card to perform.

o I/O Control consists of device drivers, special software programs(often written in assembly) which

communicate with the devices by reading and writing special codes directly to and from memory addresses

corresponding to the controller card's registers. Each controller card (device) on a system has a different

set of addresses (registers, a.k.a. ports) that it listens to, and a unique set of command codes and results

codes that it understands.

o The basic file system level works directly with the device drivers in terms of retrieving and storing

raw blocks of data, without any consideration for what is in each block. Depending on the system, blocks

may be referred to with a single block number, (e.g. block # 234234), or with head-sector-cylinder

combinations.

o The file organization module knows about files and their logical blocks, and how they map to

physical blocks on the disk. In addition to translating from logical to physical blocks, the file organization

module also maintains the list of free blocks, and allocates free blocks to files as needed.

o The logical file system deals with all of the meta data associated with a file (UID, GID, mode,

dates, etc), i.e. everything about the file except the data itself. This level manages the directory structure

and the mapping of file names to file control blocks, FCBs, which contain all of the meta data as well as

block number information for finding the data on the disk.

Layered file system.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Associate Professor/ CSE CS3451-Introduction to Operating System

File System Implementation:

Overview

File systems store several important data structures on the disk:

o A boot-control block, (per volume) a.k.a. the boot block in UNIX or the partition boot sector in

Windows contains information about how to boot the system off of this disk. This will generally be

the first sector of the volume if there is a bootable system loaded on that volume, or the block will

be left vacant otherwise.

o A volume control block, (per volume) a.k.a. the master file table in UNIX or the superblock in

Windows, which contains information such as the partition table, number of blocks on each file

system, and pointers to free blocks and free FCB blocks.

o A directory structure (per file system), containing file names and pointers to corresponding FCBs.

UNIX uses inode numbers, and NTFS uses a master file table.

o The File Control Block, FCB, (per file) containing details about ownership, size, permissions,

dates, etc. UNIX stores this information in inodes, and NTFS in the master file table as a relational

database structure.

There are also several key data structures stored in memory:

o An in-memory mount table.

o An in-memory directory cache of recently accessed directory information.

o A system-wide open file table, containing a copy of the FCB for every currently open file in the

system, as well as some other related information.

o A per-process open file table, containing a pointer to the system open file table as well as some

other information. (For example the current file position pointer may be either here or in the

system file table, depending on the implementation and whether the file is being shared or not.)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Associate Professor/ CSE CS3451-Introduction to Operating System

o

Figure illustrates some of the interactions of file system components when files are created and/or used:

o When a new file is created, a new FCB is allocated and filled out with important information

regarding the new file. The appropriate directory is modified with the new file name and FCB

information.

o When a file is accessed during a program, the open () system call reads in the FCB information

from disk, and stores it in the system-wide open file table. An entry is added to the per-process open

file table referencing the system-wide table, and an index into the per-process table is returned by the

open() system call. UNIX refers to this index as a file descriptor, and Windows refers to it as a file

handle.

o If another process already has a file open when a new request comes in for the same file, and it is

sharable, then a counter in the system-wide table is incremented and the per-process table is

adjusted to point to the existing entry in the system-wide table.

o When a file is closed, the per-process table entry is freed, and the counter in the system-wide table

is decremented. If that counter reaches zero, then the system wide table is also freed. Any data

currently stored in memory cache for this file is written out to disk if necessary.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Associate Professor/ CSE CS3451-Introduction to Operating System

12.2.2 Partitions and Mounting

Physical disks are commonly divided into smaller units called partitions. They can also be combined into

larger units, but that is most commonly done for RAID installations and is left for later chapters.

Partitions can either be used as raw devices (with no structure imposed upon them), or they can be

formatted to hold a file system (i.e. populated with FCBs and initial directory structures as appropriate.)

Raw partitions are generally used for swap space, and may also be used for certain programs such as

databases that choose to manage their own disk storage system. Partitions containing filesystems can

generally only be accessed using the file system structure by ordinary users, but can often be accessed as a

raw device also by root.

The boot block is accessed as part of a raw partition, by the boot program prior to any operating system

being loaded. The root partition contains the OS kernel and at least the key portions of the OS needed to

complete the boot process. At boot time the root partition is mounted, and control is transferred from the

boot program to the kernel found there. (Older systems required that the root partition lie completely

within the first 1024 cylinders of the disk, because that was as far as the boot program could reach. Once

the kernel had control, then it could access partitions beyond the 1024 cylinder boundary.)

Virtual File Systems

Virtual File Systems, VFS, provide a common interface to multiple different file system types. In

addition, it provides for a unique identifier (vnode) for files across the entire space, including across all

file systems of different types. (UNIX inodes are unique only across a single file system, and certainly do

not carry across networked file systems)

The VFS in Linux is based upon four key object types:

o The inode object, representing an individual file

o The file object, representing an open file.

o The superblock object, representing a file system.

o The dentry object, representing a directory entry.

Linux VFS provides a set of common functionalities for each file system, using function pointers

accessed through a table. The same functionality is accessed through the same table position for all file

system types, though the actual functions pointed to by the pointers may be file system-specific. Common

operations provided include open(), read(), write(), and mmap().

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Associate Professor/ CSE CS3451-Introduction to Operating System

Schematic view of a virtual file system.

