
 MC4204 MOBILE APPLICATION DEVELOPMENT

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 1

3.1 MEMORY MANAGEMENT

DEFINITION

Memory management is the functionality of an operating system which handles or

manages primary memory and moves processes back and forth between main memory and disk

during execution. Memory management keeps track of each and every memory location,

regardless of either it is allocated to some process or it is free.

When mobile operating system are considered, memory management plays the key role.

As the mobile devices are constrained about hardware part, special care has to be taken for the

memory management.

Android operating system is based on the linux kernel which mainly has the paging system.

The memory is categorizes as internal memory, swap memory, external memory etc.,

• The Android Runtime (ART) and dalvik virtual machine use paging and memory- mapping
(mmapping) to manage memory.

• This means that any memory an app modifies—whether by allocating new objects
or touching mmapped pages—remains resident in RAM and

cannot be paged out.

• The only way to release memory from an app is to release object references that
the app holds, making the memory available to the garbage collector.

• That is with one exception: any files mapped in without modification, such as code, can
be paged out of RAM if the system wants to use that memory elsewhere.

LINUX KERNEL VS ANDROID OS

• Android OS is nearly similar to the Linux kernel. Android OS has enhanced its features
by adding more custom libraries to the already existing ones in order to support better

system functionalities. For example last seen first killed design, kill the least recently

used process first.

• Memory management is the hardest part of mobile development. Mobile devices, from
cheaper ones to the most expensive ones, have limited amount of dynamic memory

compared to our personal computers.

• The basic facilities run by the kernel are process management, memory
management, device management and system calls. Android also supports all these

features.

https://en.wikipedia.org/wiki/Paging
https://en.wikipedia.org/wiki/Memory-mapped_files
https://en.wikipedia.org/wiki/Memory-mapped_files
https://en.wikipedia.org/wiki/Memory-mapped_files

 MC4204 MOBILE APPLICATION DEVELOPMENT

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2

Poor memory management shows itself in various ways:

1. Allocating more memory space than application actually needs,

2. Not releasing the memory area retained by application,

3. Releasing a memory area more than once (usually as a result of multi-thread operations),

4. While using automatic memory solutions (ARC or GC), losing the tracks of your objects.

GARBAGE COLLECTION

• A managed memory environment, like the ART or Dalvik virtual machine, keeps track
of each memory allocation.

• Once it determines that a piece of memory is no longer being used by the program, it
frees it back to the heap, without any intervention from the programmer.

• The Mechanism for reclaiming unused memory within a managed memory
environment is known as garbage collection.

Garbage collection has two goals:

1. Find data objects in a program that cannot be accessed in the future;

2. Reclaim the resources used by those objects.

Android’s memory heap is a generational one, meaning that there are different

buckets of allocations that it tracks, based on the expected life and size of an object being

allocated. For example, recently allocated objects belong in the Young generation. When an

object stays active long enough, it can be promoted to an older generation, followed by a

permanent generation.

Each heap generation has its own dedicated upper limit on the amount of memory

that objects there can occupy. Any time a generation starts to fill up, the system executes a

garbage collection event in an attempt to free up memory. The duration of the garbage

collection depends on which generation of objects it’s collecting and how many active

objects are in each generation.

• The system has a running set of criteria for determining when to perform

garbage collection. When the criteria are satisfied, the system stops executing

the process and begins garbage collection.

• If garbage collection occurs in the middle of an intensive processing loop like an

animation or during music playback, it can increase processing time. This increase can

potentially push code execution in your app past the recommended 16ms threshold for

efficient and smooth frame rendering.

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=unit-iii-notes-mobile-application-development

 MC4204 MOBILE APPLICATION DEVELOPMENT

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 3

UNDERSTANDING APPLICATION PRIORITY AND PROCESS STATES

• The order in which processes are killed to reclaim resources is determined by
the priority of the hosted applications. An application‘s priority is equal
to its highest-priority component.

Where two applications have the same priority, the process that has been at a lower

priority longest will be killed first. Process priority is also affected by

interprocess dependencies; if an application has a dependency on a Service

or Content Provider supplied by a second application, the secondary

application will have at least as high a priority as the application it

supports.

• All Android applications will remain running and in memory until the system
needs its resources for other applications.

Active Processes

• Active (foreground) processes are those hosting applications with
components currently interacting with the user.

• These are the processes Android is trying to keep responsive by reclaiming
resources.
There are generally very few of these processes, and they will be killed only as a last resort.

• Activities in an ―active‖ state; that is, they are in the foreground
and responding to user events. You will explore Activity states in greater detail later in
this chapter.

• Activities, Services, or Broadcast Receivers that are currently executing an
onReceive event handler.

• Services that are executing an onStart, onCreate, or onDestroy event handler.
Visible Processes

• Visible, but inactive processes are those hosting ―visible‖ Activities. As the
name suggests, visible Activities are visible, but they aren’t in the

foreground or responding to user events.

•
Started Service Processes

• Processes hosting Services that have been started. Services support ongoing
processing that should continue without a visible interface.

• Because Services don‘t interact directly with the user, they receive a slightly
lower priority than visible Activities.

• They are still considered to be foreground processes and won’t be killed

unless resources are needed for active or visible processes.
Background Processes

• Processes hosting Activities that aren’t visible and that don’t have
any Services that have been started are considered
background processes.

 MC4204 MOBILE APPLICATION DEVELOPMENT

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 4

• There will generally be a large number of background processes that
Android will kill using a last-seen-first-killed pattern to obtain
resources for foreground processes.

Empty Processes

• To improve overall system performance, Android often retains
applications in memory after they have reached the end of their
lifetimes.

• Android maintains this cache to improve the start-up time of
applications when they‘re relaunched. These processes are routinely
killed as required.

DDMS

• Android Studio includes a debugging tool called the Dalvik Debug
Monitor Service (DDMS). DDMS provides services like screen capture
on the device, threading, heap
information on the device, logcat, processes, incoming calls, SMS

checking, location, data spoofing, and many other things related to testing

your Android application.

• DDMS connects the IDE to the applications running on the device. On

Android, every application runs in its own process, each of which hosts
its own virtual machine (VM).
And each process listens for a debugger on a different port.

• When it starts, DDMS connects to ADB (Android Debug Bridge, which
is a command- line utility included with Google‘s Android SDK.).

• An Android Debugger is used for debugging the Android app and
starts a device monitoring service between the two. This will notify
DDMS when a device is connected
or disconnected.

• When a device is connected, a VM monitoring service is created
between ADB and DDMS, which will notify DDMS when a VM on the
device is started or terminated.

