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UNIT — I - INTRODUCTION TO MEASUREMENTS AND SENSORS

1.9 Dynamic characteristics of first and second order transducers for

standard test inputs

DYNAMIC CHARACTERISTICS:

Dynamic characteristics in measurements refer to the behavior of a
measurement system when the input quantity being measured is changing over
time. Unlike static characteristics, which focus on steady-state conditions, dynamic
characteristics provide insight into how a measurement system responds to rapid
changes, fluctuations, or dynamic processes. Understanding these dynamic
characteristics is essential for applications involving time-varying quantities or
processes. Here are some key dynamic characteristics:

The various dynamic characteristics are:

)] Speed of response
i) Measuring lag
i) Fidelity

V) Dynamic error

V) Overshoot

Vi) Settling time

vii)  Damped Oscillations
vii)  Rise Time

iX) Fall Time

(i) Speed of response:

It is defined as the rapidity with which a measurement system responds to changes in
the measured quantity.
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(i) Measuring lag:

The delay in the response of an instrument to the changes in the measured quantity
is known as measuring lag. The measuring lags are of two types:
1) Retardation type: In this case the response of the measurement system begins
immediately after the change in measured quantity has occurred.
2) Time delay lag: In this case the response of the measurement system begins after
a dead time after the application of the input.
(iii) Fidelity:

It is defined as the degree to which a measurement system indicates changes

in the measurand quantity without dynamic error.

(iv) Dynamic error:
It is the difference between the true value of the quantity changing with time & the
value indicated by the measurement system if no static error is assumed. It is also

called measurement error.

(v) Overshoot:

The overshoot is evaluated as the maximum amount by which moving system

moves beyond the steady state position.

A Tolerance Overshoot

frere e r e
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Damped
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(vi) Settling Time:
The settling time of a dynamic system is defined as the time required for

the output to reach and steady within a given tolerance band.

(vii) Damped Oscillations:

Damped Oscillation is defined as the reduction in amplitude of an oscillating system
due to the dissipation of energy.
(viii) Rise Time:

Rise time is the time it takes for the measurement system's output to change

from a specified percentage (e.g., 10% to 90%) of the final value in response to a step

change in the input. It's a measure of the system's speed in responding to changes.

C(y)
A

i Rise Time

Time ——

(ix) Fall Time:
Fall time is the time it takes for the measurement system's output to change from a
specified percentage (e.g., 90% to 10%) of the initial value in response to a step

change in the input.
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Normally, transducers are subjected to inputs which are random in
nature. As it is not possible to predict the random input, the
following test inputs are used to determine the dynamic behavior
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Rise Time Fall Time
TEST INPUT

of the transducers:

" & & B W

impulse input
step input
ramp input

parabolic input

sinusoidal input

The time function, laplace function and its pictorial

representation of the test inputs are given in table 3.1.

Table 3.1: Test Inputs
Name of the | Time function |Laplace | Pictorial
input function | representation
Impulse input | r(t) = &(t) 1
If the area of =1fort=10 8(1)
the impulse is =0fort#0
1 then it is
called unit t
impulse
Step input 1(t) = K for t=0 K/s
=0 for t<0 4
If K=1 rit) Kuit)
r(t) = u(t) = unit B
step. t
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Name of the | Time function Laplace Pictorial
input function| representation

3 |/Ramp input n(t)=Kt for t=0 K/s?
=0 for t=0 1) ' fxz

4 |Parabolic input [r(t) = Kt* for t=0| 2K/s’ | ., Ke'
=0 for t=0

5 |Sinusoidal n()=K sin wt Ksisrwt
input for >0 kw__ | (1)
=0 for t=0 s 4+w

t

ZERO-ORDER TRANSDUCER
The input-output relationship of a zero-order transducer is given by
y(t) = Kr(t) (3.10)

where r(t) is the input, y(t) is the output and K is the
static-sensitivity of the transducer. The laplace transfer function of
the zero-order transducer is given by
Y(s)/R(s) = K (3.11)
The relationship clearly shows that the output varies exactly
the same way as the input. Hence, a zero-order transducer
response, represents ideal dynamic performance,
A potentiometer used for displacement measurements is an

=xample for zero-order transducer. The output of a potentiometer
Is given by

co=E. x/l
=K.x

vhere x is the displacement of the slider, 1 is the total length of the
»otentiometer, E is the excitation and e, is the output in volts. The
tatic sensitivity of the potentiometer is K = E/l volts/cm. The
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Fig 3.9
Potentiometer

potentiometer will behave as a zero-order instrument only when it

is a pure resistance. [t may be noted that displacement 15 considered
as the input and not the force causing the displacement.

The response of zero-order transducers for some of the inputs
are shown in fig. 3.10a & 3.10b
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Fig 3.10a
Sten rasponse of 2ero-order transducer
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IHPUT & OUTPUT
:
5

e i

Fig 3.10b
Response of zerc-ordey fronsducer for randam input

3.6 FIRST-ORDER TRANSDUCER
The input-output relationship of a first-order transducer is miven by

dy (L)
dt
where a,,a and by are the parameters of the transducer. The Lap]'a.uc’
transfer function of the first-order transducer is given by

+agy (1) = bou(t)

yls) b K (3.13)
us T5+1
) {ﬂ B 1] (1s+1)
dn
where K = by ap = static sensitivity
and T=a; { 80 = time constant

The two parameters namely static sensitivity and time
constant characterize the first-order transducer.

A thermocouple used for temperature measurements 15 a
first-order transducer. Consider a thermocouple immersed in a
fluid medium as shown in fig. 3.11. The heat balance equation s
given by

dT,

UA(T:=T) = Mﬂd— (3.14)
t
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TEMP OF
THEBATH T,

SENSOR

Fig3.n
Example - I: order transducer

where U is the overall heat-transfer coefficient. A is the heat
transfer area, T, is the temperature of the medium, T, is the
temperature indicated by the thermocouple, M is the mass of the
sensing portion of the thermocouple and S is the specific heat of
the sensing bead.

The laplace transfer function is given by
T, () ez ]
Ta(s) Ts+1
where T=MS / UA

The voltage output of a thermocouple is proportional to the
temperature of the bead at the hot junction while the cold junction
is kept constant at 0°C. Hence

V=KT,

Where v is the thermocouple output in volts and K is
proportionality constant.

The overall transfer function of the thermocouple is given by

V() _ V) Tis)

(3.15)

(3.16)
Ta(s) Ti(s) Ta(s)
oy (3.17)
Ts+1
which is a first order system.
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It may be noted that when the hot junction of a thermocouple
5 kept inside a thermal wall in order to protect it from abrasive and
corrosive effects of the surroundings, the transducer becomes a
second order one.

Impulse Response of First Order Transducer

When a I order transducer is subjected to an Impulse input, the
output of the transducer is known as the impulse response of the |
order transducer.

This can be obtained as given below,

Let y(s) be the Laplace transform of the response. Then yis),
in general, is given as

y(s) = u (s) (3.18)

l+s51
where uis) is the Laplace transform of the input,

If the input is assumed to be an unit impulse, then u(s) = |.
Therefore

K
l+stT

The time response can be determined by taking the Laplace
inverse of y(s)

y(s) = 1 (3.19)

—e TIME

Fig 3.12a
ideal impulse resoonse of | order fransaducer



RCET/ECE/VII Sem/AU3008/Sensors & Actuators | Dr.Jackson Daniel

L yis) = y() = L — = B (3.20)
l1+s1 T

The variation of yit) with respect to time 15 plotted in fig.
3.12a. The actual cutput, however, cannot rise from zero to K/t in
zero time but will take a small but negligible time to reach the peak.
The practical input and output curves of impulse response of Lorder
instrument / transducer is shown in fig, 3.12b,

(t) &ey(t)

Fig 3.12b

Practical impulse response of | order transducer

INPUT PULSE

+——0OUTPUT

—3 Time

The impulse response of three first order transducers with
different time-constants are portrayed in fig. 3.13,

kit
Kit,

Kity

].-n.‘ﬂT
Fig 3.13

irmouise response for different fime consfants - | order fransgucer

—_— ] 1me
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As the time-constant becomes larger, the response becomes
flatter, When the time-constant is very small the system approaches
zero-order and the output is similar to the input except the change
in magnitude,

The impulse response is also useful in determining the
transfer-function of the transducer in situations where the transfer
function is not already known. It may be noted that when the
transducer is excited with an unit impulse, laplace transform of the
system output is same as the transfer function of the transducer
itself.

3.6.2 Step-Response OF First-Order Transducer
When a first-order transducer is excited by a unit-step input,

plis) = 1/s

yes) = LR

MNow I:J_f--i"'-.-!

K
(1l +sT)

L7y (0
__K
s(l+s1)
From the Laplace transform table,
y(t) = K(l =" (3.21)

The variation of y(f) with respeet to time is plotted i fig.
3.14a. The output rises at a faster rate initially and slowly
afterwards,

The transducer takes theoretically infinite time to reach the
steady-state value of the output, K. however, in practice the final
value i assumed to have reached in four or five times the
time-constant of the transducer. Actually the cutput would have
reached 95.0% of the final value in three times the time-constant,
9% 2% in 4 times the time-constant and 99.3% in five times the
time-constant, The output will reach 63.2% of the final value when
t=1T i.e in one time constant. It is the normal practice to define a

vis) =

¥ ()
= L".I
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95 [[rommms o P——
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T —# Time
Fig 3.14a
Sfep response of | order onsducar
K b
T4
yit) TI<To<Ty<T,
u—lr Time
Fig 3.14b

Step response for differant fime consfants
reading time for a first-order transducer as 4 times the time
constant.
Reading time of transducer is = 41,

In_ the expressions derived thus for in this section, it is
conveniently assumed that the initial conditions are zero, However,
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when the initial conditions are non-zero, the expression for the
step-response will get modified as
yi(t) = y(o)+{K=y(o)(l-e™") (3.22)
for example, assume a simple RC network, fig. 3.14b, whose
transfer function is a first-order one. e,
Vs ]

Vi 1 +RCs

When the capacitor is initially charged to 5V the expression
for the voltage across the capacitor is given by,

Vo= 54+(20=5(1=¢"") volts
The vanation of ¥, with respect to time is given in fig. 3.15.

+
WV —= sv. < Ve
e
Fig 3.15a
First-ondier systam wilth non-2ars inifial condifion
20V
Cutput
vl}
5V
—_— Time
Fig 3.15b

Steo rasponse of Fordear system with non-2ara inikial condition
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Experimental Determination of Time-Constant

The time-constant of the first-order transducer can be determined
experimentally from the step-response in three ways, The
transducer is selected to a step change in input and its output is
recorded. To do this, the following steps are taken the transducer
15 initially relaxed. An unit-step input, is applied. Simultanecusly
a stop watch is started. For every second the output value is noted.
A graph of the cutput ¥V, time is plotted from the output curve the
following procedure is adopted to determine the time constant,

First method
The equation for the step output is given by
yit) = K(l-e™")
assuming zero initial conditions.
When t="1, yit)=K(l —ey = 0632 K

Hence the time-constant is the time taken for the output of the
transducer to reach 63.2% of the final value for a step-input. The time
taken for the output to reach 63.2% of the final value is determined
by the graph which gives the time constant of the system.

Necond method
The output, vit) = Kil- gV )
The slope of the output curve, (ref. fig 3.16)

d}l “.] — _'{:—I.r"l: {_l:] — EE—L"E
T

dt T
dy® _K_o_K
dt T T

If the transducer output increases with the same slope it has
at t = (I, then the final value of the cutput will be reached in t. This
fact can also be used to determine the time constant from the
step-response. A tangent to the expenmentally obtained owtput
curve at t = 0 is drawn. This line cuts the final value of the output
at T«

86



RCET/ECE/VII Sem/AU3008/Sensors & Actuators | Dr.Jackson Daniel

<—Tangent to output at zero

K
y(t)
T — Time
Fig 3.16
Time constant by Initia! sfope method
Third method

When the complete plot of the step-response is not available, the
time-constant can be determined if the output at two different
instances are known. (ref, fig 3.16)

Assume ¥ith=y; at t=1;

and Vith=v: at t=tz
now vi=Kil—-e™")
y2 = K(l—e"")
¥i_ | =e™F
Y1 1-e™"
If t. is chosen as 2t; , where t; can be arbitrarily chosen, then
¥ ] —a T _ 1
Y2 - l+e ™
yi(l+e™ =y,
e o ST [}'_1_ I]
¥1 ¥i
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T= ——
(3.23)

|
II| ts —_— Time
_ Fig 3.17
lime constant by o peint methoa

= for t<0

where R is the slope of the ramp,
R

u(s) = =
52

K R

1+5t §°

KR

s (1+51)

=KR(te™ +1-1) (3.24)

for an unit ramp, R=1 and y(t) = (1 e 4 t—1)
The plot of y(t) Vs time is shown in fig. 3.18,

¥(s) =

yit) =L
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Kt
rit)
- ti.me
KRt desired
¥ | output Steady state
error KR<
|
Time lag ©
- fime
Fig 3.18

Rarmp response of first-order fransciucer

By examining the equation (3.24), it is observed that the first-order
system always has a measurement error for a ramp input which is
given by
e(t)=Kut)-y(1)
where K w(t) is the desired output and v(t) is the actual outpuL.
eit) = +KRt=EKR(te™ +t=1)

eft) = -KR 1" +KR 1 (3.25)
transient error steady-state error

The transient- error is the error which dies down as time
becomes large. The steady-state error persists even if time becomes
infinity. When the time-constant of the transducer is very small,
the transient error disappears quickly and the magnitude of the
steady-state error is also very less. When the transducer is subjected
to a fast changing input (large R), the steady-state error also
ncreases as the transducer finds it difficult to follow rapid change
in input. During steady-state, the horizontal displacement between
desired output and actual output curves is chserved to be T, This
can be interpreted as that the transducer is reading the output which

was there T seconds ago.
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3.7.1 Examples of Second Order Instrument

A vibration galvanometer is an example qf E-EEE}FLI:I-I:II'd-E!I
instrument, which is shown in fig. 3.24. This consists of a
suspended coil placed in a magnetic field between a pole pair.

When a current i flows through the coil, the coil is subjected
to a deflecting torque equal to Gi where G is the flispla::mﬂqt
constant of the galvanometer, This results ina deflection of the coil
by an angle 8. The three opposing torgue to this motion are dug tao
moment of inertia, damping effect and elasticity of suspension,
which are given by

i V COIL

Fig 3.24
Vibration gaivanometer

f K
——— D?* 2¢D %
2.7 !
mn a)ﬂ
Fig 3.25

Second-order instrument - Spring scale system.
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e de
a——, b— and c¢@8
de dt

respectively, where a, b and ¢ are constants. According to Newton's
laws of motion, the deflecting torque is equal to the opposing torque
at every instant of time. Hence

d* @ de
b 6 =0 3
a e + P + & Gi(t) (3.33)
The Laplace transfer function of the galvanometer dynamics is
B
(5) = g which is a second order system. (3.34)

I(s) as+bs+c

Spring scale system is shown in fig. 3.25 is another example
of a second order system. The applied force is opposed by the mass,
damping force and the spring force manometer, a thermometer in
a thermowell are some of the other examples of second-order
transducers.

[,
.y
~ C<l
e =1
y(t) S~ bl
\/ <=
T |
r-'"'...'
__'__.-"
=
.-"'“‘-'r"
..-"J‘f
F__.-'*
Fig .24

impuse-response of secona-arder fransaucer
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3.7.2 Impulse-Response of Second-Order Transducers

When a second-order transducer is subjected to an unit impulse,
the laplace transform of the output is given by

K
Yi(s) = ; R (s) (3.33)
L1‘53—‘;544
W, @, -
%
- —= . Ris) = I (3.36)
5—=+E-;-s+1 )
El-'.hl'l mﬂ
y(t)=L"Y(3)
e Ko,
s+20m s+,
-1 KU}:

s+ P+al{l-L)

(see the derivation for step responsc)
y(t) can be obtained from Laplace transform table as given below,
For under damped conditions (§ < 1),

g ) = —22 %ot gp (wT-C' 1) (3.37)
1=

For critically damped condition (§= 1),
yit) = Ko™
For over dampéd conditions (£ = 1),
K. oy T Y T S R L L B 1)
2 FT

The response of the second-order transducer for unit impulse
is shown in fig. 3.26 for different damping conditions.

(3.38)

y( =
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1,73 Step-Response of Second-Order Transducer |
When a second-order transducer is subjected to an unit step mput,
Ris) = l/s

The laplace transform of the output is given by

i
1
TS 1 FiS— (3.40)

2
$42lws+m, 8

This can be split into partial fractions as given below

vm:lc[i— 5420 O l (3.41)

s S+20w’+o;

which can be written by adding and subtracting o to the
denominator of the second term as

1 s+ LW, |

- K ;_{s-l--;u:-,]:q-mﬁ{l—f}
Cuwe

| s+Lafeol(l-5.

By using the laplace transform table, for{< 1,

l—e ™ cog @, (W1 -0 )t

(t) = K {3.42:‘
}I } ___—;—1:_:“':5511 @, {,l'! _'!;_2 _]'t
-1
This can be reduced to the following form
y(t) = K [l - et gin (o, V1 =G l+¢-}] {3.43a)
e
where 0 = tan”" -i' (3.43b)
s
In a similar way, for § = 1, y(t) can be obtained as
v = K[1-(1 +mg e (3.44)

Forl =1,
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-1 .|_£-_L iy —1 Ei—i—"Er—_IJm.I-
vty = K| 201 (3.45)

The step response of second-order transducer for various values of
damping ratios are shown in fig, 3.27.

."b‘-’!u:m_:ver a second-order transducer is suddenly connected
to an input, it is equivalent to the application of step input. To have
a quick indication of the measured values, the time taken for the
tre_mfsducer response to reach the steady-state value should be
mimmum. As the second-order system subjected to step-input
_Lake.-: infinite time (theoretically) to reach the steady-state value, it
5 customary to define settling time for such systems. The settling
time 15 the time taken for the output to reach and stay within a
specified percentage of steady-state value. For example, 5%
seftling time means, the time taken for the system output to reach
and stay within 95% to 105% of the steady-state value.

2y,

¥(t)
!'r!ﬂ

Fig 3.27
Step response of o l-order fransducer forf =0 0.2 0.7, 1. 1.5
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When the second-order transducer is undamped (C = 0), the
settling time is infinity. As the damping ratio is increased, the
settling time decreases and reaches an optimum value and again
increases for over damped conditions. If we are interested in 10%
settling time, then { = 0.6 gives optimum value whereas L =07 to
0.8 gives the optimum value for 5% settling time. Many
commercial transducer systems are designed to have a damping
ratio of 0.6 to 0.7.

*kkkkkk
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