Random Process:

Consider a random experiment with a sample space S. If a time function X(t, s) is assigned to each outcome $s \in S$ and where $t \in T$, then the family of all such functions, denoted by $\{X(t, s)\}$, where $s \in S$, $t \in T$ is called a random process. In other words, a random process is a collection of random variables together with time.

Note: A random process is also called stochastic process.

1 Classification of Random Process:

Classify a random process according to the characteristic of T and the state space S. We shall consider only 4 cases based on T and S.

- i) Continuous random process
- ii) Continuous random sequence
- iii) Discrete random process
- iv) Discrete random sequence

Continuous random Process:

If both S and T are continuous, then the random process is called continuous Random process.

Continuous Random Sequence:

If S is continuous and T is discrete, then the random process is called continuous random sequence.

Discrete Random Process:

If S is discrete and T is continuous, then the random process is called discrete random process.

Discrete Random Sequence:

If both S and T are discrete, then the random process is called discrete random process.

Deterministic Random Process:

A random process is called a deterministic random process if all the future values are predicted from past observation.

Non Deterministic Random Process:

A random process is called a non - deterministic random process if the future values of any sample function cannot be predicted from the past observation.

Wide Sense Stationary Process (WSS);

A process $\{(t)\}$ is said to be Wide Sense Stationary Process if (i) Mean

= E[X(t)] = constant(ii) Auto correlation $R_X(r) = E[X(t)X(t+r)]$ depends on r

Note:

A WSS process is also called as Weak Sense Stationary Process.

A SSS process is also called a strongly stationary process.

For stationary process mean and variance are constants.

A random process, which is not stationary in any sense, is called evolutionary.

Formulae:

Wide Sense Stationary (WSS):

(i)Mean = E[X(t)] = constant

(ii) Auto correlation $R_X(r) = E[X(t)X(t+r)]$ depends on r

Stationary Process:

(i)E[X(t)] = constant(ii)Var[X(t)] = constant

Strict Sense Stationary (SSS):

 $E[X^n(t)]$ is a constant for every n

Joint Wide Sense Stationary (JWSS):

(i)E[X(t)] = constant(ii)E[Y(t)] = constant(iii) $R_{XX}(t, t + r) = E[X(t)Y(t + r)]$ depends on r

Mean Ergodic:

Time average,
$$\overline{X} = \begin{bmatrix} 1 & T \\ T \end{bmatrix} = \lim_{T \to \infty} \overline{X}_{T}$$

Correlation Ergodic:

$$T_{T}^{T} = \frac{1}{2T} \int_{-T}^{T} X(t) X(t+r) dt$$

$$R_X(t,t+r) = \lim_{T\to\infty} \overline{X}_T$$

If
$$(t) = X(t + a) - X(t - a)$$
, prove that $R_{YY}(r) = \langle 2R_{XX}(r) - R_{XX}(r + 2a) - R_{XX}(r - 2a)$
Solution:
Given $(t) = X(t + a) - X(t - a)$
 $R_{YY}(t) = E[Y(t_1)Y(t_2)]$
 $= [(X(t_1 + a) - X(t_1 - a)(X(t_2 + a) - X(t_2 - a))]$
 $= E[(X(t_1 + a)(X(t_2 + a) - X(t_1 + a)X(t_2 - a) - X(t_1 - a)(X(t_2 + a) + (t_1 - a)X(t_2 - a))]$
 $= E[X(t_1 + a)(X(t_2 + a)] - E[X(t_1 + a)X(t_2 - a)] - E[X(t_1 - a)(X(t_2 + a)] + E[X(t_1 - a)X(t_2 - a)]]$
 $= R_X(t_1 + a, t_2 + a) - R_{XX}(t_1 + a, t_2 - a) - R_{XX}(t_1 - a, t_2 + a) + R_{X}(t_1 - a, t_2 - a)$
 $= R_X(t_1 + a - t_2 - a) - R_{XX}(t_1 + a - t_2 + a) - R_{XX}(t_1 - a - t_2 - a) + R_{X}(t_1 - a - t_2 - a)$
 $= R_X(t_1 - t_2) - R_{XX}(t_1 - t_2 + 2a) - R_{XX}(t_1 - t_2 - 2a) + R_{XX}(t_1 - t_2) - R_{XX}(r - 2a) + R_{XX}(r) - R_{YY}(r) = 2R_X(r) - R_{XX}(r + 2a) - R_{XX}(r - 2a)$
The following formulas are very useful to solve problems under stationary

process.

> If X is a RV with mean zero, then $Var(X) = E(X^2)$

> 1 + 2x + 3x² +
$$\cdots$$
 = (1 - x)⁻²
> 1 + 4x + 9x² + \cdots = (1 + x)(1 - x)⁻³

> If *A* and *B* are RV's and λ is a constant, then

 $[A\cos \lambda t + B\sin \lambda t] = E(A)\cos \lambda t + E(B)\sin \lambda t$

> \therefore (cos λr) = cos λr , since λ and r are constants.

STATIONARY PROCESS

Problems under Stationary process:

For a stationary process

- (1) E[X(t)] is a constant
- (2) Var[X(t)] is a constant
- 1. The process $\{(t)\}$ whose probability distribution unde certain

conditions is given by $P[X(t) = n] = { (at)^{n-1} \over ((1+at)^{(n+1)})}; n = 1, 2, 3, ...$ $\frac{at}{1+at}; n = 0$

Show that it is not a stationary process (Evolutionary).

Solution:

	12	^{OBSERVE} or		PREAD	
n	0		2	3	
$p_n(t)$	$\frac{at}{1+at}$	$\frac{1}{(1+at)^2}$	$\frac{at}{(1+at)^3}$	$\frac{(at)^2}{(1+at)^4}$	

For a stationary process,

(1) E[X(t)] is a constant

(2) Var[X(t)] is a constant

$$E[X(t)] = \sum_{n=0}^{\infty} np_n(t) = 0 + \frac{1}{(1+at)^2} + (2) \frac{at}{(1+at)^3} + (3) \frac{(at)^2}{(1+at)^4} \cdots$$
$$= \frac{1}{(1+at)^2} [1 + 2\frac{t}{1+at} + 3\frac{(at)^2}{(1+at)^2} + \cdots \dots]$$
$$= \frac{1}{(1+at)^2} [1 - \frac{at}{(1+at)}]^{-2}$$
$$= \frac{1}{(1+at)^2} \frac{1+at-at}{(1+at)} - 2$$
$$= \frac{1}{(1+at)^2} [\frac{1}{(1+at)}]^{-2}$$
$$= \frac{1}{(1+at)^2} [\frac{1}{(1+at)}]^{-2}$$
$$= \frac{1}{(1+at)^2} (1 + at)^2 = 1$$

[X(t)] = 1 which is a constant

$$\begin{split} \mathbf{E}[\mathbf{X}^{2}(\mathbf{t})] &= \sum_{n=1}^{\infty} n^{2} p_{n}(t) = 0 + \frac{1}{(1+at)^{2}} + (4) \frac{at}{(1+at)^{3}} + (9) \frac{(at)^{2}}{(1+at)^{4}} + \cdots \\ &= \frac{1}{(1+at)^{2}} \left[1 + 4 \frac{t}{1+at} + 9 \frac{(at)^{2}}{(1+at)^{2}} + \cdots \right] \\ &= \frac{1}{(1+at)^{2}} \left(1 + \frac{t}{1+at} \right) \left[1 - \frac{t}{1+at} \right] \\ &= \frac{1}{(1+at)^{2}} \left(\frac{1+2at}{1+at} \right) \left(1 + at \right)^{3} \end{split}$$

 $E[X^{2}(t)] = 1 + 2at$, which is not a constant

Var $[X(t)] = E[X^{2}(t)] - [E[X(t)]]^{2} = 1 + 2at - 1$

= 2at which is not a constant.

 \therefore {(*t*)} is not a stationary process.

2. Consider a random process A_1 and A_2 are independent random

variables with $E(A_i) = a_i$ and $Var(A_i) = \sigma_i^2$ for i = 1, 2 Prove that the process $\{X(t)\}$ is evolutionary.

Solution:

Given $(t) = A_1 + A_1 t$ where A_1 and A_2 are independent random variables

with $E(A_i) = a_i$ and $Var(A_i) = \sigma_i^2$ for i = 1, 2

For a stationary process

(1) E[X(t)] is a constant

(2) Var[X(t)] is a constant

$$[X(t)] = E[A_1 + A_1 t]$$

$$= [A_1] + tE[A_2]$$

$$= a_1 + ta_2$$

Which is not a constant.

Thus, the process $\{X(t)\}$ is evolutionary.

3. Let $(t) = B \sin mt$, where B is a random variable with mean and

variance 1 and m is a constant. Check whether $\{X(t)\}$ is a stationary or not

Solution:

Given $(t) = B\sin \omega t$, where

B is a random variable with Mean=0 and Variance =1

Mean of $B = 0 \Rightarrow (B) = 0$ (i)

Variance of $B = 1 \Rightarrow (B^2) = 1$ (ii)

For a stationary process,

(1) E[X(t)] is a constant

(2) Var[X(t)] is a constant

```
(1) [X(t)] = E[B\sin \omega t]
```

 $= [B] \sin \omega t$

= 0 From (i)

 $\therefore [X(t)]$ is a constant

(2)
$$[X^2(t)] = E[B^2 \sin^2 \omega t]$$

 $= (B^2) \sin^2 \omega t$

 $= \sin^2 \omega t$ which is not a constant From (*ii*)

 $\operatorname{Var}[X(t)] = E[X^2(t)] - [E[X(t)]^2] = \sin^2 \omega t$, which is not a constant.

Since the condition (2) for Stationary Process is not satisfied,

Hence $\{(t)\}$ is not a Stationary Process.

4. Consider the random process $X(t) = \cos(t + \varphi)$ where φ is a random variable with density function $f(\varphi) = \frac{1}{\pi}$, where $-\frac{\pi}{2} < \varphi < \frac{\pi}{2}$. Check whether or not the process is stationary.

Solution:

$$(t) = \cos(t + \varphi)$$
 where φ is a random variable with

$$(\varphi) = \frac{1}{\pi}$$
 where $-\frac{\pi}{2} < \varphi < \frac{\pi}{2}$

For a stationary process,

(1) E[X(t)] is a constant

(2) Var[X(t)] is a constant

$$E[X(t)] = E[\cos(t + \varphi)]$$

$$=\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}\cos(t+\varphi)f(\varphi)d\varphi$$

$$=\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}\cos(t+\varphi)\frac{1}{\pi}d\varphi$$

$$=\frac{1}{\pi}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos(t+\varphi)d\varphi$$

$$= \frac{1}{\pi} [\sin(t+\varphi)]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= \frac{1}{\pi} [\sin(t+\frac{\pi}{2}) - \sin(t-\frac{\pi}{2})]$$

$$= \frac{1}{\pi} [\sin(\frac{\pi}{2}+t) + \sin(\frac{\pi}{2}-t)]$$

$$\therefore \sin(\frac{\pi}{2}-\theta) = \sin(\frac{\pi}{2}+\theta) = \cos\theta$$

$$= \frac{1}{\pi} [\cos t + \cos t]$$

$$= \frac{1}{\pi} 2\cos t$$

 $E[X(t)] = \frac{1}{\pi} 2\cos t$, which depends on t.

Since the condition (1) for Stationary Process is not satisfied,

 $\{(t)\}$ is not a Stationary Process.

5. Let $(t) = \cos(mt + \theta)$, where θ is a random variable uniformly distributed over $(0, 2\pi)$. Prove that $\{(t)\}$ is a stationaryprocess of first order.

Solution:

Given: $(t) = \cos(\omega t + \theta)$, where θ is random variable uniformly distributed over $(0,2\pi)$.

$$\therefore f_{\theta}(\theta) = \frac{1}{2\pi}; 0 < \theta < 2\pi$$

To prove $\{(t)\}$ is a first order stationary process.

we have to prove $f_X(x; t)$ is independent of time.

To find f(x; t): We have $x = \cos(\omega t + \theta)$ $\Rightarrow \omega t + \theta = \pm \cos^{-1}[x]$ To find f(x; t), Take x = (t) $\Rightarrow \theta = -\omega t \pm \cos^{-1}[x] \because \cos[\pm(\omega t + \theta)] = \cos(\omega t + \theta)$ Let $\theta_1 = -\omega t - \cos^{-1} x$ and $\theta_2 = -\omega t + \cos^{-1} x$ $\frac{d\theta_1}{dx} = 0 - \frac{-1}{\sqrt{1 - x^2}} = \frac{1}{\sqrt{1 - x^2}}$

The first order density of $\{(t)\}$ is given by

$$f_{x}(x,t) = \left|\frac{d\theta_{1}}{dx}\right| f_{\theta}(\theta_{1}) + \left|\frac{d\theta_{2}}{dx}\right| f_{\theta}(\theta_{2})$$

$$= \left|\frac{1}{\sqrt{1-x^{2}}}\right| \frac{1}{2\pi} + \left|\frac{-1}{\sqrt{1-x^{2}}}\right| \frac{1}{2\pi}$$

$$= \frac{1}{2\pi} \frac{1}{\sqrt{1-x^{2}}} + \frac{1}{2\pi} \frac{1}{\sqrt{1-x^{2}}} \qquad f_{x}(x,t) = \frac{1}{\pi} \frac{1}{\sqrt{1-x^{2}}}$$

$$= \frac{2}{2\pi} \frac{1}{\sqrt{1-x^{2}}}$$

We have $x = (t) = \cos(\omega t + \theta)$.

Since the value of $cos(\omega t + \theta)$ lies between -1 and +1, we have $-1 \le x \le 1$.

which is independent of time.

Hence, $\{(t)\}$ is a stationary process of first order.