M circles

Constant-magnitude loci (M-circles)

Fig: 1 A family of constant M circles

To obtain the constant-magnitude loci, let us first note that $\mathrm{G}(\mathrm{j} \omega)$ is a complex quantity and can be written as follows:

$$
G(j \omega)=X+j Y
$$

where X and Y are real quantities. Then M is given by

$$
M=\frac{|X+j Y|}{|1+X+j Y|}
$$

and M^{2} is

$$
M^{2}=\frac{X^{2}+Y^{2}}{(1+X)^{2}+Y^{2}}
$$

Hence

$$
X^{2}\left(1-M^{2}\right)-2 M^{2} X-M^{2}+\left(1-M^{2}\right) Y^{2}=0
$$

If $\mathrm{M}=1$, then from the above equation we obtain $\mathrm{X}=-1 / 2$
This is the equation of a straight line parallel to the Y -axis and passing through the point ($-\mathrm{t}, 0$).
If $\mathrm{M} \neq 1$, the above equation can be written

$$
X^{2}+\frac{2 M^{2}}{M^{2}-1} X+\frac{M^{2}}{M^{2}-1}+Y^{2}=0
$$

If the term $M^{2} /\left(M^{2}-1\right)^{2}$ is added to both sides of this last equation, we obtain

$$
\left(X+\frac{M^{2}}{M^{2}-1}\right)^{2}+Y^{2}=\frac{M^{2}}{\left(M^{2}-1\right)^{2}}
$$

The above equation is the equation of a circle with center at $\mathrm{X}=-\mathrm{M}^{2} /\left(\mathrm{M}^{2}-1\right), \mathrm{Y}=0$ and with radius $\left|\mathrm{M} /\left(\mathrm{M}^{2}-1\right)\right|$.

The constant M loci on the $\mathrm{G}(\mathrm{s})$ plane are thus a family of circles.
The center and radius of the circle for a given value of M can be easily calculated.

For example, for $\mathrm{M}=1.3$, the center is at $(-2.45,0)$ and the radius is 1.88 .
A family of constant M circles is shown in Figure 1.
It is seen that as M becomes larger compared with 1 , the M circles become smaller and converge to the -1 j 0 point.

For $\mathrm{M}>1$, the centers of the M circles lie to the left of the -1 j 0 point.
Similarly, as M becomes smaller compared with 1, the M circle becomes smaller and converges to the origin.

For $0<\mathrm{M}<1$, the centers of the M circles lie to the right of the origin.
$\mathrm{M}=1$ corresponds to the locus of points equidistant from the origin and from the -1 j 0 point.
As stated earlier, it is a straight line passing through the point ($-\mathrm{t}, 0$) and parallel to the imaginary axis. (The constant M circles corresponding to $M>1$ lie to the left of the $M=1$ line and those corresponding to $0<\mathrm{M}<1$ lie to the right of the $\mathrm{M}=1$ line.)

The M circles are symmetrical with respect to the straight line corresponding to $\mathrm{M}=1$ and with respect to the real axis.

N circles

Constant phase-angle loci (\mathbf{N}-circles):

Fig 1: A family of constant N circles
We shall obtain the phase angle α in terms of X and Y. Since

$$
\ell^{j a}=\frac{X+j Y}{1+X+j Y}
$$

the phase angle α is

$$
\alpha=\tan ^{-1}\left(\frac{Y}{X}\right)-\tan ^{-1}\left(\frac{Y}{1+X}\right)
$$

If we define

$$
\tan \alpha=N
$$

then

$$
N=\tan \left[\tan ^{-1}\left(\frac{Y}{X}\right)-\tan ^{-1}\left(\frac{Y}{1+X}\right)\right]
$$

Since

$$
\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}
$$

we obtain

$$
N=\frac{\frac{Y}{X}-\frac{Y}{1+X}}{1+\frac{Y}{X}\left(\frac{Y}{1+X}\right)}=\frac{Y}{X^{2}+X+Y^{2}}
$$

or

$$
X^{2}+X+Y^{2}-\frac{1}{N} Y=0
$$

The addition of $(1 / 4)+1 /(2 N)^{2}$ to both sides of this last equation yields

$$
\left(X+\frac{1}{2}\right)^{2}+\left(Y-\frac{1}{2 N}\right)^{2}=\frac{1}{4}+\left(\frac{1}{2 N}\right)^{2}
$$

This is an equation of a circle with center at $X=-1 / 2, y=1 /(2 N)$ and with radius $\sqrt{(1 / 4)+1 /(2 N)^{2}}$

For example, if $\alpha=30^{\circ}$, then $\mathrm{N}=\tan \alpha=0.577$, and the center and the radius of the circle corresponding to $\alpha=30^{\circ}$ are found to be $(-0.5,0.866)$ and unity, respectively.

Since the above equation is satisfied when $\mathrm{X}=\mathrm{Y}=0$ and $\mathrm{X}=-1, \mathrm{Y}=0$ regardless of the value of N , each circle passes through the origin and the -1 j 0 point.

The constant a loci can be drawn easily once the value of N is given.
A family of constant N circles is shown in Figure 1 with α as a parameter.
It should be noted that the constant N locus for a given value of a is actually not the entire circle but only an arc.

In other words, $\alpha=30^{\circ}$ and $\alpha=-150^{\circ}$ arcs are parts of the same circle.
This is so because the tangent of an angle remains the same if $\pm 180^{\circ}$ (or multiplies thereof) is added to the angle.

