EQUIVALENCE OF PUSHDOWN AUTOMATA AND CFG

If a grammar \mathbf{G} is context-free, we can build an equivalent nondeterministic PDA which accepts the language that is produced by the context-free grammar \mathbf{G}. A parser can be built for the grammar \mathbf{G}.

Also, if \mathbf{P} is a pushdown automaton, an equivalent context-free grammar G can be constructed where
$\mathbf{L}(\mathbf{G})=\mathbf{L}(\mathbf{P})$
In the next two topics, we will discuss how to convert from PDA to CFG and vice versa.

Algorithm to find PDA corresponding to a given CFG
Input - $\mathrm{A} C F G, \mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$
Output - Equivalent PDA, $\mathrm{P}=\left(\mathrm{Q}, \Sigma, \mathrm{S}, \delta, \mathrm{q}_{0}, \mathrm{I}, \mathrm{F}\right)$
Step 1 - Convert the productions of the CFG into GNF.
Step 2 - The PDA will have only one state $\{q\}$.
Step 3 - The start symbol of CFG will be the start symbol in the PDA.
Step 4 - All non-terminals of the CFG will be the stack symbols of the PDA and all the terminals of the CFG will be the input symbols of the PDA.

Step 5 - For each production in the form $\mathbf{A} \rightarrow \mathbf{a X}$ where a is terminal and \mathbf{A}, \mathbf{X} are combination of terminal and non-terminals, make a transition $\boldsymbol{\delta}(\mathbf{q}, \mathbf{a}, \mathbf{A})$.

Problem

Construct a PDA from the following CFG.
$\mathbf{G}=(\mathbf{S}, \mathbf{X}\},\{\mathbf{a}, \mathbf{b}\}, \mathbf{P}, \mathbf{S})$
where the productions are -
$\mathbf{S} \rightarrow \mathbf{X S}|\varepsilon, \mathbf{A} \rightarrow \mathbf{a X b}| \mathbf{A b} \mid \mathbf{a b}$

Solution

Let the equivalent PDA,
$P=(\{q\},\{a, b\},\{a, b, X, S\}, \delta, q, S)$
where δ -
$\delta(\mathrm{q}, \varepsilon, \mathrm{S})=\{(\mathrm{q}, \mathrm{XS}),(\mathrm{q}, \varepsilon)\}$
$\delta(\mathrm{q}, \varepsilon, \mathrm{X})=\{(\mathrm{q}, \mathrm{aXb}),(\mathrm{q}, \mathrm{Xb}),(\mathrm{q}, \mathrm{ab})\}$
$\delta(\mathrm{q}, \mathrm{a}, \mathrm{a})=\{(\mathrm{q}, \varepsilon)\}$
$\delta(\mathrm{q}, 1,1)=\{(\mathrm{q}, \varepsilon)\}$

Algorithm to find CFG corresponding to a given PDA
Input $-\mathrm{A} C F G, \mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$
Output - Equivalent PDA, $\mathrm{P}=\left(\mathrm{Q}, \Sigma, \mathrm{S}, \delta, \mathrm{q}_{0}, \mathrm{I}, \mathrm{F}\right)$ such that the non- terminals of the grammar G will be $\left\{X_{w x} \mid w, x \in Q\right\}$ and the start state will be $A_{q 0, F}$.

Step 1 - For every $\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{Q}, \mathrm{m} \in \mathrm{S}$ and $\mathrm{a}, \mathrm{b} \in \sum$, if $\delta(\mathrm{w}, \mathrm{a}, \varepsilon)$ contains (y, m) and ($\mathrm{z}, \mathrm{b}, \mathrm{m}$) contains (x, ε), add the production rule $\mathrm{X}_{\mathrm{wx}} \rightarrow \mathrm{a} \mathrm{X}_{\mathrm{yz}} \mathrm{b}$ in grammar G .

Step 2 - For every $\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{Q}$, add the production rule $\mathrm{X}_{\mathrm{wx}} \rightarrow \mathrm{X}_{\mathrm{wy}} \mathrm{X}_{\mathrm{yx}}$ in grammar G .
Step 3 - For $w \in$, add the production rule $\mathrm{X}_{\mathrm{ww}} \rightarrow \varepsilon$ in grammar G .

