
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 – DISTRIBUTED COMPUTING

UNIT III

DISTRIBUTED MUTEX & DEADLOCK

DISTRIBUTED MUTEX & DEADLOCK

Distributed mutual exclusion algorithms: Introduction – Preliminaries – Lamport‘s algorithm –Ricart-Agrawala

algorithm – Maekawa‘s algorithm – Suzuki–Kasami‘s broadcast algorithm. Deadlock detection in distributed

systems: Introduction – System model – Preliminaries –Models of deadlocks – Knapp‘s classification –

Algorithms for the single resource model, the AND model and the OR model.

3.1 DISTRIBUTED MUTUAL EXCLUSION ALGORITHMS

• Mutual exclusion is a concurrency control property which is introduced to prevent

race conditions.

• It is the requirement that a process cannot access a shared resource while another

concurrent process is currently present or executing the same resource.

• Message passing is the sole means for implementing distributed mutual exclusion.

• The decision as to which process is allowed access to the CS next is arrived at by

message passing, in which each process learns about the state of all other processes in

some consistent way.

• There are three basic approaches for implementing distributed mutual exclusion:

1. Token-based approach:

− A unique token is shared among all the sites.

− If a site possesses the unique token, it is allowed to enter its critical section

− This approach uses sequence number to order requests for the critical section.

− Each requests for critical section contains a sequence number. This sequence

number is used to distinguish old and current requests.

− This approach insures Mutual exclusion as the token is unique.

− Eg: Suzuki-Kasami’s Broadcast Algorithm

2. Non-token-based approach:

− A site communicates with other sites in order to determine which sites should

execute critical section next. This requires exchange of two or more successive

round of messages among sites.

− This approach use timestamps instead of sequence number to order requests

for the critical section.

− When ever a site make request for critical section, it gets a timestamp.

Timestamp is also used to resolve any conflict between critical section requests.

− All algorithm which follows non-token based approach maintains a logical

clock. Logical clocks get updated according to Lamport’s scheme.

− Eg: Lamport's algorithm, Ricart–Agrawala algorithm

Mutual exclusion in a distributed system states that only one process is allowed to execute the

critical section (CS) at any given time.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 – DISTRIBUTED COMPUTING

3. Quorum-based approach:

− Instead of requesting permission to execute the critical section from all other

sites, Each site requests only a subset of sites which is called a quorum.

− Any two subsets of sites or Quorum contains a common site.

− This common site is responsible to ensure mutual exclusion.

− Eg: Maekawa’s Algorithm

3.1.1 Preliminaries

• The system consists of N sites, S1, S2, S3, …, SN.

• Assume that a single process is running on each site.

• The process at site Si is denoted by pi. All these processes communicate

asynchronously over an underlying communication network.

• A process wishing to enter the CS requests all other or a subset of processes by

sending REQUEST messages, and waits for appropriate replies before entering the

CS.

• While waiting the process is not allowed to make further requests to enter the CS.

• A site can be in one of the following three states: requesting the CS, executing the CS,

or neither requesting nor executing the CS.

• In the requesting the CS state, the site is blocked and cannot make further requests for

the CS.

• In the idle state, the site is executing outside the CS.

• In the token-based algorithms, a site can also be in a state where a site holding the

token is executing outside the CS. Such state is referred to as the idle token state.

• At any instant, a site may have several pending requests for CS. A site queues up

these requests and serves them one at a time.

• N denotes the number of processes or sites involved in invoking the critical section, T

denotes the average message delay, and E denotes the average critical section

execution time.

3.1.2 Requirements of mutual exclusion algorithms

• Safety property:

The safety property states that at any instant, only one process can execute the

critical section. This is an essential property of a mutual exclusion algorithm.

• Liveness property:

This property states the absence of deadlock and starvation. Two or more sites

should not endlessly wait for messages that will never arrive. In addition, a site must

not wait indefinitely to execute the CS while other sites are repeatedly executing the

CS. That is, every requesting site should get an opportunity to execute the CS in finite

time.

• Fairness:

Fairness in the context of mutual exclusion means that each process gets a fair

chance to execute the CS. In mutual exclusion algorithms, the fairness property

generally means that the CS execution requests are executed in order of their arrival in

the system.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 – DISTRIBUTED COMPUTING

3.1.3 Performance metrics

➢ Message complexity: This is the number of messages that are required per CS

execution by a site.

➢ Synchronization delay: After a site leaves the CS, it is the time required and before

the next site enters the CS. (Figure 3.1)

➢ Response time: This is the time interval a request waits for its CS execution to be

over after its request messages have been sent out. Thus, response time does not

include the time a request waits at a site before its request messages have been sent

out. (Figure 3.2)

➢ System throughput: This is the rate at which the system executes requests for the

CS. If SD is the synchronization delay and E is the average critical section execution

time.

Figure 3.1 Synchronization delay

Figure 3.2 Response Time

Low and High Load Performance:

▪ The performance of mutual exclusion algorithms is classified as two special loading

conditions, viz., “low load” and “high load”.

▪ The load is determined by the arrival rate of CS execution requests.

▪ Under low load conditions, there is seldom more than one request for the critical

section present in the system simultaneously.

▪ Under heavy load conditions, there is always a pending request for critical section at a

site.

Best and worst case performance

▪ In the best case, prevailing conditions are such that a performance metric attains the

best possible value. For example, the best value of the response time is a roundtrip

message delay plus the CS execution time, 2T +E.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 – DISTRIBUTED COMPUTING

▪ For examples, the best and worst values of the response time are achieved when load

is, respectively, low and high;

▪ The best and the worse message traffic is generated at low and heavy load conditions,

respectively.

3.2 LAMPORT’S ALGORITHM

• Lamport’s Distributed Mutual Exclusion Algorithm is a permission based algorithm

proposed by Lamport as an illustration of his synchronization scheme for distributed

systems.

• In permission based timestamp is used to order critical section requests and to resolve

any conflict between requests.

• In Lamport’s Algorithm critical section requests are executed in the increasing order of

timestamps i.e a request with smaller timestamp will be given permission to execute

critical section first than a request with larger timestamp.

• Three type of messages (REQUEST, REPLY and RELEASE) are used and

communication channels are assumed to follow FIFO order.

• A site send a REQUEST message to all other site to get their permission to enter

critical section.

• A site send a REPLY message to requesting site to give its permission to enter the

critical section.

• A site send a RELEASE message to all other site upon exiting the critical section.

• Every site Si, keeps a queue to store critical section requests ordered by their

timestamps.

• request_queuei denotes the queue of site Si.

• A timestamp is given to each critical section request using Lamport’s logical clock.

• Timestamp is used to determine priority of critical section requests. Smaller timestamp

gets high priority over larger timestamp. The execution of critical section request is

always in the order of their timestamp.

Fig 3.1: Lamport’s distributed mutual exclusion algorithm

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 – DISTRIBUTED COMPUTING

To enter Critical section:

▪ When a site Si wants to enter the critical section, it sends a request message Request(tsi,

i) to all other sites and places the request on request_queuei. Here, Tsi denotes the

timestamp of Site Si.

▪ When a site Sj receives the request message REQUEST(tsi, i) from site Si, it returns a

timestamped REPLY message to site Si and places the request of site Si on

request_queuej

To execute the critical section:

• A site Si can enter the critical section if it has received the message with timestamp

larger than (tsi, i) from all other sites and its own request is at the top of request_queuei.

To release the critical section:

▪ When a site Si exits the critical section, it removes its own request from the top of its

request queue and sends a timestamped RELEASE message to all other sites. When a

site Sj receives the timestamped RELEASE message from site Si, it removes the request

of Sia from its request queue.

Correctness

Theorem: Lamport’s algorithm achieves mutual exclusion.

Proof: Proof is by contradiction.

▪ Suppose two sites Si and Sj are executing the CS concurrently. For this to happen

conditions L1 and L2 must hold at both the sites concurrently.

▪ This implies that at some instant in time, say t, both Si and Sj have their own requests

at the top of their request queues and condition L1 holds at them. Without loss of

generality, assume that Si ’s request has smaller timestamp than the request of Sj .

▪ From condition L1 and FIFO property of the communication channels, it is clear that at

instant t the request of Si must be present in request queuej when Sj was executing its

CS. This implies that Sj ’s own request is at the top of its own request queue when a

smaller timestamp request, Si ’s request, is present in the request queuej – a

contradiction!

Theorem: Lamport’s algorithm is fair.

Proof: The proof is by contradiction.

▪ Suppose a site Si ’s request has a smaller timestamp than the request of another site Sj

and Sj is able to execute the CS before Si .

▪ For Sj to execute the CS, it has to satisfy the conditions L1 and L2. This implies that

at some instant in time say t, Sj has its own request at the top of its queue and it has also

received a message with timestamp larger than the timestamp of its request from all

other sites.

▪ But request queue at a site is ordered by timestamp, and according to our assumption

Si has lower timestamp. So Si ’s request must be placed ahead of the Sj ’s request in the

request queuej . This is a contradiction!

Message Complexity:

Lamport’s Algorithm requires invocation of 3(N – 1) messages per critical section execution.

These 3(N – 1) messages involves

• (N – 1) request messages

• (N – 1) reply messages

• (N – 1) release messages

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 – DISTRIBUTED COMPUTING

Drawbacks of Lamport’s Algorithm:

• Unreliable approach: failure of any one of the processes will halt the progress of

entire system.

• High message complexity: Algorithm requires 3(N-1) messages per critical section

invocation.

Performance:

Synchronization delay is equal to maximum message transmission time. It requires 3(N – 1)

messages per CS execution. Algorithm can be optimized to 2(N – 1) messages by omitting

the REPLY message in some situations.

