
CCS356-OBVJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RECT

PIPE AND FILTER ARCHITECTURES

Pipe and Filter is a simple architectural style that connects a number of

components that process a stream of data, each connected to the next component in

the processing pipeline via a Pipe.

The Pipe and Filter architecture is inspired by the Unix technique of connecting

the output of an application to the input of another via pipes on the shell.

The pipe and filter architecture consists of one or more data sources. The data

source is connected to data filters via pipes. Filters process the data they receive,

passing them to other filters in the pipeline. The final data is received at a Data Sink:

Definition

Pipe and Filter is another architectural pattern, which has independent entities

called filters (components) which perform transformations on data and process the

input they receive, and pipes, which serve as connectors for the stream of data being

transformed, each connected to the next component in the pipeline.

CCS356-OBVJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RECT

Many systems are required to transform streams of discrete data items, from input to

output. Many types of transformations occur repeatedly in practice, and so it is

desirable to create these as independent, reusable parts, Filters. (Len Bass, 2012)

Description of the Pattern

The pattern of interaction in the pipe-and-filter pattern is characterized by successive

transformations of streams of data. As you can see in the diagram, the data flows in

one direction. It starts at a data source, arrives at a filter’s input port(s) where

processing is done at the component, and then, is passed via its output port(s) through

a pipe to the next filter, and then eventually ends at the data target.

A single filter can consume data from, or produce data to, one or more ports.

They can also run concurrently and are not dependent. The output of one filter is the

input of another, hence, the order is very important.

A pipe has a single source for its input and a single target for its output. It

preserves the sequence of data items, and it does not alter the data passing through.

CCS356-OBVJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RECT

Advantages of selecting the pipe and filter architecture are as follows:

· Ensures loose and flexible coupling of components, filters.

· Loose coupling allows filters to be changed without modifications to other filters.

· Conductive to parallel processing.

· Filters can be treated as black boxes. Users of the system don’t need to know the

logic behind the working of each filter.

· Re-usability. Each filter can be called and used over and over again.

However, there are a few drawbacks to this architecture and are discussed below:

· Addition of a large number of independent filters may reduce performance due to

excessive computational overheads.

· Not a good choice for an interactive system.

· Pipe-and-fitter systems may not be appropriate for long-running computations.

Applications of the Pattern

CCS356-OBVJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RECT

In software engineering, a pipeline consists of a chain of processing elements

(processes, threads, functions, etc.), arranged so that the output of each element is the

input of the next. (Wiki, n.d.).

The architectural pattern is very popular and used in many systems, such as the text-

based utilities in the UNIX operating system. Whenever different data sets need to be

manipulated in different ways, you should consider using the pipe and filter

architecture. More specific implementations are discussed below:

1. Compilers:

A compiler performs language transformation: Input is in language A and output

is in language B. In order to do that the input goes through various stages inside the

compiler — these stages form the pipeline. The most commonly used division consists

of 3 stages: front-end, middle-end, and back-end.

The front-end is responsible for parsing the input language and performing

syntax and semantic and then transforms it into an intermediate language. The middle-

end takes the intermediate representation and usually performs several optimization

steps on it, the resulting transformed program in is passed to the back-end which

transforms it into language B.

Each level consists of several steps as well, and everything together forms the

pipeline of the compiler.

CCS356-OBVJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RECT

USER INTERFACE DESIGN – SOFTWARE ENGINEERING

The user interface is the front-end application view to which the user interacts to

use the software. The software becomes more popular if its user interface is:

1. Attractive
2. Simple to use

3. Responsive in a short time
4. Clear to understand

5. Consistent on all interface screens

Types of User Interface

1. Command Line Interface: The Command Line Interface provides a command

prompt, where the user types the command and feeds it to the system. The user
needs to remember the syntax of the command and its use.

2. Graphical User Interface: Graphical User Interface provides a simple interactive

interface to interact with the system. GUI can be a combination of both hardware
and software. Using GUI, the user interprets the software.

CCS356-OBVJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RECT

User Interface Design Process

User Interface Design Process

The analysis and design process of a user interface is iterative and can be

represented by a spiral model. The analysis and design process of user interface

consists of four framework activities.

1. User, Task, Environmental Analysis, and Modeling

Initially, the focus is based on the profile of users who will interact with the system,

i.e., understanding, skill and knowledge, type of user, etc., based on the user’s

profile users are made into categories. From each category requirements are
gathered. Based on the requirement’s developer understand how to develop the

interface. Once all the requirements are gathered a detailed analysis is conducted. In

the analysis part, the tasks that the user performs to establish the goals of the system
are identified, described and elaborated. The analysis of the user environment

focuses on the physical work environment. Among the questions to be asked are:

1. Where will the interface be located physically?

CCS356-OBVJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RECT

2. Will the user be sitting, standing, or performing other tasks unrelated to the
interface?

3. Does the interface hardware accommodate space, light, or noise constraints?

4. Are there special human factors considerations driven by environmental factors?

2. Interface Design

The goal of this phase is to define the set of interface objects and actions i.e., control

mechanisms that enable the user to perform desired tasks. Indicate how these control

mechanisms affect the system. Specify the action sequence of tasks and subtasks,
also called a user scenario. Indicate the state of the system when the user performs a

particular task. Always follow the three golden rules stated by Theo Mandel. Design

issues such as response time, command and action structure, error handling, and help
facilities are considered as the design model is refined. This phase serves as the

foundation for the implementation phase.

 Interface Construction and Implementation

The implementation activity begins with the creation of a prototype (model) that
enables usage scenarios to be evaluated. As iterative design process continues a User

Interface toolkit that allows the creation of windows, menus, device interaction,

error messages, commands, and many other elements of an interactive environment
can be used for completing the construction of an interface.

4. Interface Validation

This phase focuses on testing the interface. The interface should be in such a way

that it should be able to perform tasks correctly, and it should be able to handle a
variety of tasks. It should achieve all the user’s requirements. It should be easy to

use and easy to learn. Users should accept the interface as a useful one in their work.

User Interface Design Golden Rules

The following are the golden rules stated by Theo Mandel that must be followed
during the design of the interface. Place the user in control:

1. Define the interaction modes in such a way that does not force the user into

unnecessary or undesired actions: The user should be able to easily enter and
exit the mode with little or no effort.

2. Provide for flexible interaction: Different people will use different interaction

mechanisms, some might use keyboard commands, some might use mouse, some

CCS356-OBVJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RECT

might use touch screen, etc., Hence all interaction mechanisms should be
provided.

3. Allow user interaction to be interruptible and undoable: When a user is doing

a sequence of actions the user must be able to interrupt the sequence to do some
other work without losing the work that had been done. The user should also be

able to do undo operation.

4. Streamline interaction as skill level advances and allow the interaction to be

customized: Advanced or highly skilled user should be provided a chance to

customize the interface as user wants which allows different interaction

mechanisms so that user doesn’t feel bored while using the same interaction
mechanism.

5. Hide technical internals from casual users: The user should not be aware of the

internal technical details of the system. He should interact with the interface just
to do his work.

6. Design for direct interaction with objects that appear on-screen: The user

should be able to use the objects and manipulate the objects that are present on
the screen to perform a necessary task. By this, the user feels easy to control over

the screen.

	PIPE AND FILTER ARCHITECTURES
	USER INTERFACE DESIGN – SOFTWARE ENGINEERING
	Types of User Interface
	User Interface Design Process
	1. User, Task, Environmental Analysis, and Modeling
	2. Interface Design
	Interface Construction and Implementation
	4. Interface Validation

	User Interface Design Golden Rules

