UNIT I

Mechanics

1.1 Centre of mass of two particle system

Let us consider a system consisting of two particles of mass m_1 and m_2 . P_1 and P_2 are the position at time t and r_1 and r_2 are the corresponding distances from the origin o. velocity and acceleration

$$v_1 = \frac{dr_1}{dt}$$
 and $a_1 = \frac{dv_1}{dt}$

$$v_2 = \frac{dr_2}{dt}$$
 and $a_1 = \frac{dv_2}{dt}$

particle at P₁ has two forces

- (i) A force F_{12} due to the particle at P_1 .
- (ii) A force F_{1e} , external force.

Resultant force

$$F_1 = F_{12} + F_{1e}$$
 ----- (1)

net force F₂ acting on the particle P₁

$$F_2 = F_{21} + F_{2e}$$
 ----- (2)

By Newton's law

$$F_1 = m_1 a_1$$

$$F_2 = m_2 a_2$$
 ----- (4)

Eqn (3) + (4)

$$F_1 + F_2 = m_1 a_1 + m_2 a_2$$
 ---- (5)

Sub. Eqn (1) and (2) in (5)

$$F_{12} + F_{1e} + F_{21} + F_{2e} = m_1 a_1 + m_2 a_2 \qquad ----- (6)$$

By Newton's third law

Force F_{12} exerted by particle at P_2 is equal and opposite to F_{21} exerted by particle at P_1

$$F_{12} = -F_{21}$$

Eqn $(6) \Rightarrow$

$$F = F_{1e} + F_{2e} = m_1 a_1 + m_2 a_2 \qquad ----- (7)$$

Total mass of the system

$$M = m_1 + m_2$$

Net force acting on the system produces and acceleration a_{CM} . celled acceleration of the centre of mass of the system

$$F = M a_{CM} = m_1 a_1 + m_2 a_2 \qquad ----- (8)$$

 R_{CM} = position vector of centre of mass

$$\therefore a_{\rm CM} = \frac{d^2 R_{CM}}{dt^2} \qquad ----- (9)$$

Sub (8) in (9)

$$\frac{d^2 R_{CM}}{dt^2} = \frac{1}{M} \left(m_1 \frac{d^2 r_1}{dt^2} + m_2 \frac{d^2 r_2}{dt^2} \right)$$

$$\frac{d^2 R_{CM}}{dt^2} = \frac{1}{M} \frac{d^2}{dt^2} (m_1 r_1 + m_2 r_2)$$

$$R_{CM} = \frac{1}{M} (m_1 r_1 + m_2 r_2)$$

$$R_{CM} = \frac{m_1 r_1 + m_2 r_2}{m_1 + m_2} \qquad ------ (10) \ [\because M = m_1 + m_2]$$

This is the expression foe centre of mass of system consisting of two particle.

Centre of mass of system consisting of n particle

Let m_1, m_2, m_3, \dots mass of the particle with position vectors r_1, r_2, r_3, \dots

$$M = m_1 + m_2 + m_3 + m_4, \dots$$

Centre of mass

$$R_{CM} = \frac{m_1 r_1 + m_2 r_2 + m_3 r_3 \dots m_n r_n}{m_1 + m_2 + m_3 \dots m_n}$$

$$\frac{\sum_{i=1}^n m_i r_i}{\sum_{i=1}^n m_i} = \frac{\sum_{i=1}^n m_i r_i}{M}$$

X coordinate and y coordinate of centre of mass

$$x = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 \dots m_n x_n}{m_1 + m_2 + m_3 \dots m_n}$$
 and

$$y = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3 \dots m_n y_n}{m_1 + m_2 + m_3 \dots m_n}$$

