UNIT I

Mechanics

1.1 Centre of mass of two particle system

Let us consider a system consisting of two particles of mass m_{1} and $m_{2} . P_{1}$ and P_{2} are the position at time t and r_{1} and r_{2} are the corresponding distances from the origin o. velocity and acceleration

$$
\begin{aligned}
& \mathrm{v}_{1}=\frac{d r_{1}}{d t} \quad \text { and } \mathrm{a}_{1}=\frac{d v_{1}}{d t} \\
& \mathrm{v}_{2}=\frac{d r_{2}}{d t} \quad \text { and } \mathrm{a}_{1}=\frac{d v_{2}}{d t}
\end{aligned}
$$

particle at P_{1} has two forces
(i) A force F_{12} due to the particle at P_{1}.
(ii) A force $\mathrm{F}_{1 \mathrm{e}}$, external force.

Resultant force

$$
\begin{equation*}
\mathrm{F}_{1}=\mathrm{F}_{12}+\mathrm{F}_{1 \mathrm{e}} \tag{1}
\end{equation*}
$$

net force F_{2} acting on the particle P_{1}

$$
\begin{equation*}
\mathrm{F}_{2}=\mathrm{F}_{21}+\mathrm{F}_{2 \mathrm{e}} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\text { By Newton's law } \quad \mathrm{F}_{1}=\mathrm{m}_{1} \mathrm{a}_{1} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{F}_{2}=\mathrm{m}_{2} \mathrm{a}_{2} \tag{4}
\end{equation*}
$$

Eqn (3) $+(4)$

$$
\begin{equation*}
\mathrm{F}_{1}+\mathrm{F}_{2}=\mathrm{m}_{1} \mathrm{a}_{1}+\mathrm{m}_{2} \mathrm{a}_{2} \tag{5}
\end{equation*}
$$

Sub. Eqn (1) and (2) in (5)
$\mathrm{F}_{12}+\mathrm{F}_{1 \mathrm{e}}+\mathrm{F}_{21}+\mathrm{F}_{2 \mathrm{e}}=\mathrm{m}_{1} \mathrm{a}_{1}+\mathrm{m}_{2} \mathrm{a}_{2}$

By Newton's third law
Force F_{12} exerted by particle at P_{2} is equal and opposite to F_{21} exerted by particle at P_{1}

$$
\mathrm{F}_{12}=-\mathrm{F}_{21}
$$

Eqn (6) \Rightarrow

$$
\begin{equation*}
\mathrm{F}=\mathrm{F}_{1 \mathrm{e}}+\mathrm{F}_{2 \mathrm{e}}=\mathrm{m}_{1} \mathrm{a}_{1}+\mathrm{m}_{2} \mathrm{a}_{2} \tag{7}
\end{equation*}
$$

Total mass of the system

$$
\mathrm{M}=\mathrm{m}_{1}+\mathrm{m}_{2}
$$

Net force acting on the system produces and acceleration a_{CM}. celled acceleration of the centre of mass of the system

$$
\begin{equation*}
\mathrm{F}=\mathrm{Ma} \mathrm{a}_{\mathrm{CM}}=\mathrm{m}_{1} \mathrm{a}_{1}+\mathrm{m}_{2} \mathrm{a}_{2} \tag{8}
\end{equation*}
$$

$\mathrm{R}_{\mathrm{CM}}=$ position vector of centre of mass

$$
\begin{equation*}
\therefore \mathrm{a}_{\mathrm{CM}}=\frac{d^{2} R_{C M}}{d t^{2}} \tag{9}
\end{equation*}
$$

Sub (8) in (9)

$$
\begin{gathered}
\frac{d^{2} R_{C M}}{d t^{2}}=\frac{1}{M}\left(m_{1} \frac{d^{2} r_{1}}{d t^{2}}+m_{2} \frac{d^{2} r_{2}}{d t^{2}}\right) \\
\frac{d^{2} R_{C M}}{d t^{2}}=\frac{1}{M} \frac{d^{2}}{d t^{2}}\left(m_{1} r_{1}+m_{2} r_{2}\right) \\
\mathrm{R}_{\mathrm{CM}}=\frac{1}{M}\left(m_{1} r_{1}+m_{2} r_{2}\right) \\
\mathrm{R}_{\mathrm{CM}}=\frac{m_{1} r_{1}+m_{2} r_{2}}{m_{1}+m_{2}}
\end{gathered}
$$

This is the expression foe centre of mass of system consisting of two particle.

Centre of mass of system consisting of n particle

Let $m_{1}, m_{2}, m_{3}, \ldots .$. mass of the particle with position vectors $r_{1}, r_{2}, r_{3}, \ldots$.

$$
\mathrm{M}=m_{1}+m_{2}+m_{3}+m_{4}, \ldots .
$$

Centre of mass

$$
\mathrm{R}_{\mathrm{CM}}=\frac{m_{1} r_{1}+m_{2} r_{2}+m_{3} r_{3} \ldots \ldots \ldots \ldots . . m_{n} r_{n}}{m_{1}+m_{2}+m_{3} \ldots \ldots \ldots \ldots . . m_{n}}
$$

$$
\frac{\sum_{i=1}^{n} m_{i} r_{i}}{\sum_{i=1}^{n} m_{i}}=\frac{\sum_{i=1}^{n} m_{i} r_{i}}{\mathrm{M}}
$$

X coordinate and y coordinate of centre of mass

$$
\mathrm{x}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3} \ldots \ldots \ldots \ldots \ldots . m_{n} x_{n}}{m_{1}+m_{2}+m_{3} \ldots \ldots \ldots \ldots . . m_{n}} \quad \text { and }
$$

$$
\mathrm{y}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3} \ldots \ldots \ldots \ldots \ldots . m_{n} y_{n}}{m_{1}+m_{2}+m_{3} \ldots \ldots \ldots \ldots . . m_{n}}
$$

