
UNIT V 

 
 

GAS MIXTURES AND THERMODYNAMIC RELATIONS 

 

5.1 IDEAL GAS  

An ideal gas is a theoretical gas composed of a set of randomly-moving point 

particles that interact only through elastic collisions. The ideal gas concept is useful 

because it obeys the ideal gas law, a simplified equation of state, and is amenable to 

analysis under statistical mechanics.  

At normal ambient conditions such as standard temperature and pressure, 

most real gases behave qualitatively like an ideal gas. Generally, deviation from an 

ideal gas tends to decrease with higher temperature and lower density, as the work 

performed by intermolecular forces becomes less significant compared with the 

particles' kinetic energy, and the size of the molecules becomes less significant 

compared to the empty space between them. 

 

EQUATION TABLE FOR AN IDEAL GAS  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 



 

 

5.2 REAL GAS  

Real gas, as opposed to a Perfect or Ideal Gas, effects refers to an assumption 
base where the following are taken into account: 

 

• Compressibility effects 

• Variable heat capacity 

• Van der Waals forces 

• Non-equilibrium thermodynamic effects  
• Issues with molecular dissociation and elementary reactions with variable 
composition. 

 

For most applications, such a detailed analysis is "over-kill" and the ideal gas 

approximation is used. Real-gas models have to be used near condensation point of 

gases, near critical point, at very high pressures, and in several other less usual cases. 

 

4.3 VAN DER WAALS MODELISATION  

Real gases are often modeled by taking into account their molar weight and 
molar volume  
 
 
 

Where P is the pressure, T is the temperature, R the ideal gas constant, and Vm the 

molar volume. a and b are parameters that are determined empirically for each gas, 

but are sometimes estimated from their critical temperature (Tc) and critical pressure 

(Pc) using these relations:  
 
 
 
 
 
 
 
 

 

5.4 REDLICH–KWONG MODELISATION  

The Redlich–Kwong equation is another two-parameters equation that is used 

to modelize real gases. It is almost always more accurate than the Van der Waals 

equation, and often more accurate than some equation with more than two 

parameters. The equation is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

 

5.5 THERMODYNAMICS RELATIONS  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Maxwell relations. 
 

The Maxwell’s equations relate entropy to the three directly measurable  
 

properties p,v and T for pure simple compressible substances.  

   



   
 

 From first law of thermodynamics,     
 

 Q = W +  U      
 

 Rearranging the parameters      
 

 
Q =  U + W since [ds = 

 
, W = pdv ]  

  
 

`` Tds = du +pdv      
 

 du = Tds – pdv ----------- (1)   
 

 We know that, h = u + pv      
 

 dh = du + d(pv)      
 

 = du + vdp + pdv  ----------- (2) 
 

 Substituting the value du in equation (2),  
 

 dh = Tds + pdv + vdp – pdv     
 

 dh = Tds + vdp ----------- (3)   
 

 By Helmotz’s function,      
 

 a = u – Ts      
 

 da = du – d(Ts)      
 

 = du – Tds – sdT  ----------- (4) 
 

 Substituting the values of du in equation (4),  
 

 da = Tds – pdv – Tds – sdT     
 

 T = – pdv – sdT ----------- (5)   
 

 By Gibbs functions,      
 

 G = h – Ts      
 

 dg = dh – d(Ts)      
 

   
 



 
 

 

dg = dh – Tds – sdT ----------- (6) 

 

Substituting the value of dh in equation (6), 
 

So, dg becomes 

 

dg = Tds + vdp – Tds – sdT 

 

dg = vdp – sdT ----------- (7) 

 

By inverse exact differential we can write equation (1) 

as, du = Tds – pdv 

 

----------- (8)  

 

Similarly, equation (3) can be written as, 
 

dh = Tds + vdp 

  

 

Similarly, equation (5) can be written as,  
 

Similarly, equation (7) can be written as, 
 

dg = vdp – sdT 

  

 

These equations 8, 9, 10 and 11 are Maxwell’s equation.  

 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Tds relations in terms of temperature and pressure changes and temperature 

and volume changes. 
 

The entropy (s) of pure substance can be expressed as a function 

of temperature (T) and pressure (p). 

 
 
   



   
 

 s = f(T,p)   
 

We know that,   
 

From Maxwell equation, we know that  
 
 
 
 

Substituting in ds equation, 

 

ds = dT dp  

 

Multiplying by T on both sides of the equation, 

 

Tds = dT dp  
 
 

This is known as the first form of entropy equation or the first Tds equation. 

By considering the entropy of a pure substance as a function of temperature 

and specific volume, 
 

i.e.    s = f(T,v)      
 



 

 

From the Maxwell Equations, we know that  
 
 

Substituting in ds Equation, 

 

ds = 
 dT + 

 
 dv  

  
 

Multiplying by T,    
 

Tds = dT + T 
  

dv  

  
 

 

This is known as the second form of entropy equation or the second Tds 
equation 

 

4.6 THE JOULE-THOMSON COEFFICIENT OF AN IDEAL GAS IS ZERO 

 

The Joule-Thomson coefficient is defined as the change in temperature with change 

in pressure, keeping the enthalpy remains constant. It is denoted by,  

 

We know that the equation of state as, 
 

pV=RT 

 

Differentiating the above equation of state with respect to T by keeping pressure, p 

constant. 
 

 

µ = 0.  
 

It implies that the Joule-Thomson coefficient is zero for ideal gas. 
 
 
 
 
 
 
 

 



 

 

4.7 CLAUSIUS–CLAPEYRON RELATION  

The Clausius–Clapeyron relation, named after Rudolf Clausius and Émile 

Clapeyron, who defined it sometime after 1834, is a way of characterizing the phase 

transition between two phases of matter, such as solid and liquid. On a pressure– 

temperature (P–T) diagram, the line separating the two phases is known as the 

coexistence curve. The Clausius–Clapeyron relation gives the slope of this curve. 

Mathematically,  
 
 
 

 

where dP / dT is the slope of the coexistence curve, L is the latent heat, T is the 

temperature, and V is the volume change of the phase transition. 

 

Pressure Temperature Relations  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A typical phase diagram. The dotted line gives the anomalous behavior of water. 

The Clausius–Clapeyron relation can be used to (numerically) find the relationships 

between pressure and temperature for the phase change boundaries. Entropy and 

volume changes (due to phase change) are orthogonal to the plane of this drawing 

 

Derivation  

Using the state postulate, take the specific entropy, s, for a homogeneous 
substance to be a function of specific volume, v, and temperature, T. 
 
 

 



 
 
 
 
 

 

During a phase change, the temperature is constant, so  
 
 
 

Using the appropriate Maxwell relation gives  
 
 
 

Since temperature and pressure are constant during a phase change, the derivative 

of pressure with respect to temperature is not a function of the specific volume. Thus 

the partial derivative may be changed into a total derivative and be factored out when 

taking an integral from one phase to another,  
 
 
 
 
 
 
 
 

 

is used as an operator to represent the change in the variable that follows it— final 

(2) minus initial (1) For a closed system undergoing an internally reversible process, 

the first law is  
 
 

 

This leads to a version of the Clausius–Clapeyron equation that is simpler to 

integrate:  
 
 
 
 
 
 
 
 
 
 
 

 

C is a constant of integration  

These last equations are useful because they relate saturation pressure and 

saturation temperature to the enthalpy of phase change, without requiring specific 

volume data. Note that in this last equation, the subscripts 1 and 2 correspond to 

different locations on the pressure versus temperature phase lines. In earlier 

equations, they corresponded to different specific volumes and entropies at the same 

saturation pressure and temperature. 
 

 

 
 

 



The Joule–Thomson (Kelvin) coefficient  

The rate of change of temperature T with respect to pressure P in a Joule– Thomson 

process (that is, at constant enthalpy H) is the Joule–Thomson (Kelvin) coefficient 

μJT. This coefficient can be expressed in terms of the gas's volume V, its heat 

capacity at constant pressure Cp, and its coefficient of thermal expansion α as   
 
 
 
 

 

See the Appendix for the proof of this relation. The value of μJT is typically 

expressed in °C/bar (SI units: K/Pa) and depends on the type of gas and on the 

temperature and pressure of the gas before expansion.  

All real gases have an inversion point at which the value of μJT changes sign. 

The temperature of this point, the Joule–Thomson inversion temperature, depends 

on the pressure of the gas before expansion. In a gas expansion the pressure 

decreases, so the sign of is always negative. With that in mind, the following table 

explains when the Joule–Thomson effect cools or warms a real gas:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Helium and hydrogen are two gases whose Joule–Thomson inversion temperatures 

at a pressure of one atmosphere are very low (e.g., about 51 K (−222 °C) for helium). 

Thus, helium and hydrogen warm up when expanded at constant enthalpy at typical 

room temperatures. On the other hand nitrogen and oxygen, the two most abundant 

gases in air, have inversion temperatures of 621 K (348 °C) and 764 K (491 °C) 

respectively: these gases can be cooled from room temperature by the Joule– 

Thomson effect. 
 
 
 
 
 
 

 



Derivation of the Joule–Thomson (Kelvin) 
coefficent A derivation of the formula  
 
 
 
 
 

 

for the Joule–Thomson (Kelvin) coefficient.  

The partial derivative of T with respect to P at constant H can be computed by 

expressing the differential of the enthalpy dH in terms of dT and dP, and equating 

the resulting expression to zero and solving for the ratio of dT and dP. It follows 

from the fundamental thermodynamic relation that the differential of the enthalpy is 

given by:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.8 SOLVED PROBLEMS 

1. A mixture of ideal gases consists of 7kg ofand 2kg ofat a pressure of 4bar  

 and a temperature of 27°C. Determine:  
i. Mole fraction of each constituent,  

ii. Equivalent molecular weight of the mixture,  
iii. Equivalent gas constant of the mixture,  
iv. The partial pressure and partial volumes,  
v. The volume and density of the mixture 

 
 

 

Given data: 

 

                               M1=7kg 

 
= M22kg 

 
p = 4bar 

T = 27°C 

 
Solution:   

 

 
 
 
 

Describe Joule Kelvin effect with the help of T-p diagram 

 

The Joule Kelvin effect or Joule Thomson effect is an efficient way of cooling gases. In 

this, a gas is made to undergo a continuous throttling process. A constant pressure is 

 

 



maintained at one side of a porous plug and a constant lower pressure at the other side. The 

apparatus is thermally insulated so that the heat loss can be measured.  
 

Joule – Thomson co – efficient is defined as the change in temperature with change in 

pressure, keeping the enthalpy remains constant. It is denoted by,  

 

µ =  

 

Throttling process: 

 

It is defined as the fluid expansion through a minute orifice or slightly opened valve. During 

this process, pressure and velocity are reduced. But there is no heat transfer and no work done by 

the system. In this process enthalpy remains constant. 
 

Joule Thomson Experiment: 

 

The figure shows the arrangement of porous plug experiment. In this experiment, a 
 

stream of gas at a pressure and temperature is allowed to flow continuously through a porous pig. 

The gas comes out from the other side of the porous pig at a pressure and temperature . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The whole apparatus is insulated. Therefore no heat transfer takes place. Q = 0. 
 

The system does not exchange work with the surroundings. 
 

So, W=0 from steady flow energy equation we know that 

 

g  + 
 + (  + ) + Q = g  + 

 + (  + 
 ) + W  

   
 

Since there is no considerable change velocity,  and , Q=0,W=0, are applied in steady 
  

flow energy equation. Therefore, 
 

It indicates that the enthalpy is constant for throttling process. 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

It is assumed that a series of experiments performed on a real gas keeping the 

initial pressure and temperature constant with various down steam pressures ( ). It is 

found that the down steam temperature also changes. The results from 
 

these experiments can be plotted as enthalpy curve on T-p plane. 
 

The slope of a constant enthalpy is known as Joule Thomson Coefficient. It is denoted by 
µ. 

  
 
 

For real gas, µ may be either positive or negative depending upon the thermodynamic 
state of the gas. 

 

 



 
 

 

 
 

  

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



𝑃 

Compressibility factor 

Ideal gasses follow the formula 𝑃𝑉 = 𝑚𝑅𝑇, but real gasses fall on a 

spectrum of compressibility, denoted by z. This is a ratio of the actual 

volume of a gas to the volume that is predicted by an ideal gas version at a 

given temperature and pressure. 

Z may be greater than or less than 1. A value of 1 indicates an ideal gas. 
 

 

𝑧 = 𝑃
𝑣 

 
 

𝑅
𝑇 

𝑃𝑉 
= 

𝑟𝑚𝑇 

Subscript R indicates “reduced”, and subscript C indicates “critical”. 

These are used to create a general graph that can be applied to any gas, 

rather than graphs specifically for each type of gas. 

𝑃 
𝑃𝑅 = = 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

𝑐 
𝑇 

𝑇𝑅 = 
𝐶 

= 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 
 𝑇 



𝑣′ = 𝑝𝑠𝑢𝑒𝑑𝑜 − 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒 
  

 
 
 

Once the compressibility factor is known, the modified ideal gas equation can be 

used to continue solving a given problem: 

𝑃𝑣 = 𝑧𝑅𝑇 

The ideal-gas equation is very simple and thus very 

convenient to use. Gases deviate from ideal-gas behavior 

significantly at states near the saturation region and the critical 

point. This deviation from ideal-gas behavior at a given 

temperature and pressure can accurately be accounted for by the 

introduction of a correction factor called the compressibility 

factor Z. It is defined as: 

𝑷𝒗 
Z = 

𝑹𝑻 
(2-17) 

𝑷𝒗 = ZRT (2-18) 

or, it can also be expressed as: 

𝒗𝐚𝐜𝐭𝐮𝐚𝐥 
Z = 

𝒗𝐢𝐝𝐞𝐚𝐥 
(2-19) 

 

where 𝒗𝐢𝐝𝐞𝐚𝐥 = RT/P. Obviously, Z = 1 

For ideal gases. For real gases Z can 

be greater than or less than unity (Fig. 

2-55). 

Gases behave differently at a given 

temperature and pressure, but they 

behave very much the same at 

temperatures and pressures 

normalized with respect to their 

critical temperatures and pressures.  
Figure 2-55. The compressibility 

factor is unity for ideal gases. 



𝑷 𝑻 
PR = 

𝑷𝐜𝐫   
and    TR = 

𝑻𝐜𝐫 
(2-20) 

Here, PR = reduced pressure, TR = reduced temperature 

The Z factor for all gases is approximately the same at the same 

reduced pressure and temperature (Fig. 2-56). This is called the 

principle of corresponding states. 
 

 

 

 

 
In Fig. 2-57, the experimentally determined Z values are plotted 

against PR and TR for several gases. The gases seem to obey the 
 

Figure 2-56. The compressibility factor is 

the same for all gases at the reduced 

pressure and temperature ( principle of 

corresponding states). 



principle of corresponding states reasonably well. By curve- 

fitting all the data, we obtain the generalized compressibility chart 

which can be used for all gages. 
 

 

 
The following observations can be made from generalized 

compressibility chart: 

1. At very low pressures (PR ≪ 1), the gases behave as an ideal 

gas regardless of temperature (Fig. 2-58). 
 

Figure 2-57. Comparison of Z factors for various gases. 



2. At high temperatures (TR > 2), ideal-gas behavior can assumed 

with good accuracy regardless of pressure (except when PR ≫ 1). 

3. The deviation of a gas from ideal-gas behavior is greatest in 

the vicinity of the critical point (Fig. 2-59). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Example 2-10. 

Determine the specific volume of refrigerant-12 at 1 MPa and 50℃, 

using (a) the refrigerant-12 tables, (b) the ideal-gas equation of 

state, and (c) the generalized compressibility chart. Also 

determine the error involved in parts (b) and (c). 
 
 
 
 
 
 

Figure 2-58. At very low pressures, 

all gases approach ideal-gas 

behavior (regardless of their 

temperature). 

Figure 2-59. Gases deviate 

from the ideal-gas behavior 

most in the neighborhood of 

the critical point. 



Solution 

A sketch of the system is given in Fig. 2-60. The gas constant, the 

critical pressure, and the critical temperature of refrigerant- 12 are 

determined from Table A-1 to be: 

R = 0.0688 kPa.m3/(kg.K) 

Pcr = 4.01 MPa 

Tcr = 384.7 K 
 
 
 
 
 
 
 
 
 
 
 
 

(a) The specific volume of refrigerant-12 at the specified state is 

determined from Table A-13 to be: 

𝑷 = 𝟏 𝐌𝐏𝐚
} 𝒗 = 0.01837 m3/kg 

𝑻 = 𝟓𝟎℃ 

This is the experimentally determined value, and thus it is the 

most accurate. 

(b) The specific volume of the refrigerant-12 under the ideal-gas 

assumption is determined from the idea-gas relation (Eq.2-9) to: 

𝒗 = 
𝑹𝑻 

= 
[(𝟎.𝟎𝟔𝟖𝟖 𝐤𝐏𝐚.𝐦𝟑)/(𝐤𝐠.𝐊)](𝟑𝟐𝟑 𝐊) 

 
 

 
= 0.02222 m3/kg 

𝑷 𝟏𝟎𝟎𝟎 𝐤𝐏𝐚 
 

Therefore, treating the refrigerant-12 vapor as an ideal gas 

would result in as error of: 
 
 

Figure 2-60. Schematic 

for Example 2-10. 



 
% error = 

𝟎.𝟎𝟐𝟐𝟐𝟐−𝟎.𝟎𝟏𝟖𝟑𝟕 

𝟎.𝟎𝟏𝟖𝟑𝟕 
x 100 = 20.8 % 

 

(c) To determine the correction factor Z from the compressibility 

chart, we first need to calculate the reduce pressure and 

temperature: 

𝑷 
PR = 

𝑷𝐜𝐫 
= 

𝟏 𝐌𝐏𝐚 
 

 

𝟒.𝟎𝟏 𝐌𝐏𝐚 
= 0.249

 

 

Z = 0.83
 (Fig.
A-30) 

 

𝑻 𝟑𝟐𝟑 𝐊 
TR = 

𝑻𝐜𝐫 
= 

𝟑𝟖𝟒.𝟕 
= 0.840 

Thus, 𝒗 = Z𝒗𝐢𝐝𝐞𝐚𝐥 = (0.83)(0.02222 m3/kg) = 0.01844 m3/kg 
 
 
 

 
% error = 

𝟎.𝟎𝟏𝟖𝟒𝟒−𝟎.𝟎𝟏𝟖𝟑𝟕 

𝟎.𝟎𝟏𝟖𝟑𝟕 
x 100 = 0.38 % 

 
 

 

 

When P and 𝒗, or T and 𝒗, are given instead of P and T, the 

generalized compressibility chart can still be used to determine 

the third property, but it word involve tedious trial and error, 

Therefore, it is very convenient to define one more reduced 

property called the pseudo-reduced specific volume 𝒗R as: 

 
𝒗R = 

𝒗𝐚𝐜𝐭𝐮𝐚𝐥 

𝑹𝑻𝐜𝐫/𝑷𝐜𝐫 

 
(2-21) 



 

𝒗R is defined differently from PR and TR. It is related to Tcr and Pcr 

instead of 𝒗cr. Lines of constant 𝒗R are also added to the 

compressibility charts, and this enables one to determine T or P 

without having to resort to time-consuming iterations (Fig. 2-61). 
 
 
 

  
 

Example 2-11. 

Determine the pressure of water vapor at 600℉ 

and 0. 514 ft3/lbm, using (a) the steam tables, (b) 

the ideal-gas equation, and (c) the generalized 

compressibility chart?. 

Solution 

A sketch of the system is given in Fig. 2-62. The 

gas constant, the critical pressure, and the 

critical temperature of steam are determined 

from Table A-1E to be: 

R = 0.5956 psia.ft3/(lbm.R) 

Pcr = 3204 psia 

Tcr = 1165.3 R 

(a) The pressure of steam at the specified state is determined 

Figure 2-61. The compressibility 

factor can also be determining 

from a knowledge of PR and 𝒗R. 

Figure 2-62 Schematic 

for Example 2-11. 



from Table A-6E to be: 

𝒗 = 𝟎. 𝟓𝟏𝟒 𝐟𝐭𝟑/𝐥𝐛𝐦} P = 1000 psia
 

𝑻 = 𝟔𝟎𝟎℉ 

This is the experimentally value, and thus it is the most 

accurate. 
 
 
 

(b) The pressure of steam under the ideal-gas assumption is 

determined from the ideal-gas relation (Eq.2.9) to be: 

𝑹𝑻 
 

 

𝒗 

[𝟎.𝟓𝟗𝟓𝟔 𝐩𝐬𝐢𝐚.𝐟𝐭𝟑/(𝐥𝐛𝐦.𝐑)](𝟏𝟎𝟔𝟎 𝐑) 
= 

𝟎.𝟓𝟏𝟒 𝐟𝐭𝟑/𝐥𝐛𝐦 
= 1228.3 psia 

 

Therefore, treating the steam as an ideal gas would result in an 

error of : 

 
% error = 

𝟏𝟐𝟐𝟖.𝟐−𝟏𝟎𝟎𝟎 

𝟏𝟎𝟎𝟎 
x 100 = 22.8 % 

 

(c) To determine the correction Z from the compressibility chart 

(Fig.A-30), we first need to calculate the pseudo-reduced specific 

volume and the reduced temperature: 

𝒗 = 
𝒗𝐚𝐜𝐮𝐚𝐥 

R  
𝑹𝑻𝐜𝐫/𝑷𝐜𝐫 

(𝟎.𝟓𝟏𝟒 𝐟𝐭𝟑/𝐥𝐛𝐦)(𝟑𝟐𝟎𝟒 𝐩𝐬𝐢𝐚) 
= 

[𝟎.𝟓𝟎𝟓𝟔 𝐩𝐬𝐢𝐚.𝐟𝐭𝟑/(𝐥𝐛𝐦.𝐑)](𝟏𝟏𝟔𝟓.𝟑 𝐑)] 

= 2.373 PR = 0.33 
 

𝑻 𝟏𝟎𝟔𝟎 𝐑 
TR = 

𝑻𝐜𝐫 
= 

𝟏𝟏𝟔𝟓𝟑 𝐑 
= 0.91 

Thus, P = PRPcr = (0.33)(3204 psia) = 1057.3 psia 

𝟏𝟎𝟓𝟕.𝟑−𝟏𝟎𝟎𝟎 
% error = 

𝟏𝟎𝟎𝟎 
x 100 = 5.7 % 

 

P = 



 

 

Using the compressibility chart reduced the error from 22.8 to 

5.7 percent, which is acceptable for most engineering purposes 

(Fig. 2-63). A bigger chart, of course, would give better resolution 

and reduce the reading errors. Notice that we did not have to 

determine Z in this problem since we could read PR directly from 

the chart. 
 

 

  
 

2-9. Other Equations of State 

The ideal-gas equation of state is very simple, but its range 

of applicability is limited. It is desirable to have equations of state 

that represent the 𝑷 − 𝒗 − 𝑻 behavior of substances accurately 

over a larger region with no limitations. Several equations have 

been proposed for this purpose (Fig. 2-64). 
 

Figure 2-63 Results obtained by 

using the compressibility chart are 

usually within a few percent of the 

experimentally determined values. 



𝟐 

 

 

 
 
 

Van der Waals Equation of State 

The van der Waals equation of state is one of the earliest 

equations was proposed in 1873, and it has two constants which 

are determined from the behavior of a substance at the critical 

point. The van der Waals equation of state is given by: 

(P + 
𝒂 

)(𝒗 – b) = RT (2-22) 
𝒗 

Van der Waals intended to improve the ideal-gas equation of 

state by including two of the effects not considered in the ideal-

gas model: The intermolecular attraction forces and the volume 

occupied by the molecules themselves. a/𝒗2 accounts for the 

intermolecular attraction forces, and b accounts for the volume 

occupied by the gas molecules. Van der Waals proposed to 

correct this by replacing 𝒗 in ideal-gas relation with the quality 𝒗 

Figure 2-64 Several equations of state 

are proposed throughout the history. 



– b, where b represents the volume by the gas molecules per unit 

mass. 

The equation determination of the two constants appearing 

in this equation is based on the observation that the critical 

isotherm on a P-𝒗 diagram has a horizontal inflection point at 

the critical point (Fig. 2-65). Thus the first and second derivatives 

of P with respect to 𝒗 at the critical point must be zero. That is, 
 

                      = 0(2-23)=𝐜𝐨𝐧𝐬𝐭 

 
 
 
 

The costants a and b can be determined for any substance from 

the critical-point data alone (Table A-1).The van der Waals 

equation of state can also be expreeed on a unitmole basis by 

replacing the 𝒗 in Eq. 2-22 by 𝒗̅, and the R in Eq. 2-23 and 2-24 by 

Ru. 
 
 
 
 



      

 

 
 
  

 

 

 

Figure 2-65 Critical isotherm 

of a pure substance has an 

inflection at the critical state. 
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