Basics of Oscillators: Criteria for oscillation:

The canonical form of a feedback system is shown in Figure, and Equation 1 describes the performance of any feedback system (an amplifier with passive feedback Components constitute a feedback system).

Fig. Canonical form of feedback circuit

 $\frac{V_{OUT}}{V_{IN}} = \frac{A}{1 + A\beta}$ (1)

Oscillation results from an unstable state; i.e., the feedback system can't find a stable state because its transfer function can't be satisfied. Equation 1 becomes unstable when $(1+A\beta) = 0$ because A/0 is an undefined state. Thus, the key to designing an oscillator is to insure that $A\beta = -1$ (called the Barkhausen criterion), or using complex math the equivalent expression is $A\beta = 1 - 180^{\circ}$. The 180° phase shift criterion applies to negative feedback systems, and 0° phase shift applies to positive feedback systems.

The output voltage of a feedback system heads for infinite voltage when $A\beta = -1$. When the output voltage approaches either power rail, the active devices in the amplifiers change gain, causing the value of A to change so the value of $A\beta \neq 1$; thus, the charge to infinite voltage slows down and eventually halts. At this point one of three things can occur.

First, nonlinearity in saturation or cutoff can cause the system to become stable and lock up.Second, the initial charge can cause the system to saturate (or cut off) and stay that way for a long time before it becomes linear and heads for the opposite power rail.

Third, the system stays linear and reverses direction, heading for the opposite power rail. Alternative two produces highly distorted oscillations (usually quasi square waves), and the resulting oscillators are called relaxation oscillators. Alternative three produces sine wave oscillators.

Phase Shift in Oscillators:

OBSERVE OPTIMIZE OUTSPREND

The 180° phase shift in the equation $A\beta = 1-180^\circ$ is introduced by active and passive components. The phase shift contributed by active components is minimized because it varies with temperature, has a wide initial tolerance, and is device dependent.

Amplifiers are selected such that they contribute little or no phase shift at the oscillation frequency. A single pole RL or RC circuit contributes up to 90° phase shift per pole, and because 180° is required for oscillation, at least two poles must be used in oscillator design.

An LC circuit has two poles; thus, it contributes up to 180° phase shift per pole pair, but LC and LR oscillators are not considered here because low frequency inductors are expensive, heavy, bulky, and non-ideal. LC oscillators are designed in high frequency applications beyond the frequency range of voltage feedback op amps, where the inductor size, weight, and cost are less significant.

Multiple RC sections are used in low-frequency oscillator design in lieu of inductors. Phase shift determines the oscillation frequency because the circuit oscillates at the frequency that accumulates -180° phase shift. The rate of change of phase with frequency, dS/dt, determines frequency stability.

When buffered RC sections (an op amp buffer provides high input and low output impedance) are cascaded, the phase shift multiplies by the number of sections, n (see Figure 2). Although two cascaded RC sections provide 180° phase shift, dS/dt at the oscillator frequency is low, thus oscillators made with two cascaded RC sections have poor frequency stability. Three equal cascaded RC filter sections have a higher dS/dt, and the resulting oscillator has improved frequency stability.

Adding a fourth RC section produces an oscillator with an excellent dS/dt, thus this is the most stable oscillator configuration. Four sections are the maximum number used

because op amps come in quad packages, and the four-section oscillator yields four sine waves that are 45° phase shifted relative to each other, so this oscillator can be used to obtain sine/cosine or quadrature sine waves.

Applications

Crystal or ceramic resonators make the most stable oscillators because resonators have an extremely high dS/dt resulting from their non-linear properties. Resonators are used for high- frequency oscillators, but low-frequency oscillators do not use resonators because of size, weight, and cost restrictions.Op amps are not used with crystal or ceramic resonator oscillators because op amps have low bandwidth. It is more cost-effective to build a highfrequency crystal oscillator and count down the output to obtain a low frequency than it is to use a low-frequency resonator.

Gain in Oscillators:

The oscillator gain must equal one $(A\beta = 1-180^{\circ})$ at the oscillation frequency. The circuit becomes stable when the gain exceeds one and oscillations cease. When the gain exceeds one with a phase shift of -180° , the active device non-linearity reduces the gain to one.

The non-linearity happens when the amplifier swings close to either power rail because cutoff or saturation reduces the active device (transistor) gain. The paradox is that worst-case design practice requires nominal gains exceeding one for manufacturability, but excess gain causes more distortion of the output sine wave.

When the gain is too low, oscillations cease under worst-case conditions, and when the gain is too high, the output wave form looks more like a square wave than a sine wave.Distortion is a direct result of excess gain overdriving the amplifier; thus, gain must be carefully controlled in low distortion oscillators.Phase-shift oscillators have distortion, but they achieve low-distortion output voltages because cascaded RC sections act as distortion filters. Also, buffered phase-shift oscillators have low distortion because the gain is controlled and distributed among the buffers.

Sine Wave Generators (Oscillators)

Sine wave oscillator circuits use phase shifting techniques that usually employ

- Two RC tuning networks, and
- Complex amplitude limiting circuitry

RC phase shift oscillator using op-amp in inverting amplifier introduces the phase shift of 180° between input and output. The feedback network consists of 3 RC sections each producing 60° phase shift. Such a RC phase shift oscillator using op-amp is shown in the figure.

The output of amplifier is given to feedback network. The output of feedback network drives the amplifier. The total phase shift around a loop is 1800 of amplifier and 180 due to 3 RC sections, thus 360 °. This satisfies the required condition for positive feedback and circuit works as an oscillator.

$$f_{\text{oscillation}} = \frac{1}{2\pi\sqrt{R_2R_3(C_1C_2 + C_1C_3 + C_2C_3) + R_1R_3(C_1C_2 + C_1C_3) + R_1R_2C_1C_2}}$$

Oscillation criterion:

The loop phase shift is -180° when the phase shift of each section is -60° , and this occurs when $\omega = 2\pi f = 1.732/RC$ because the tangent $60^{\circ} = 1.73$. The magnitude of β at this point is $(1/2)^3$, so the gain, A, must be equal to 8 for the system gain to be equal to 1.

Wien Bridge Oscillator:

Figure give the Wien-bridge circuit configuration. The loop is broken at the positive input, and the return signal is calculated in Equation 2 below.

Fig. Wien Bridge Oscillator

$$\frac{V_{\text{RETURN}}}{V_{\text{OUT}}} = \frac{\frac{R}{RCs+1}}{\frac{R}{RCs+1} + \frac{1}{Cs}} = \frac{1}{3 + RCs + \frac{1}{RCs}} = \frac{1}{3 + j\left(\frac{RC\omega - \frac{1}{RC\omega}}{RC\omega}\right)}.$$
(2)
where $s = j\omega$ and $j = \sqrt{1}$.

When $\omega = 2\pi f = 1/RC$, the feedback is in phase (this is positive feedback), and the gain is 1/3, so oscillation requires an amplifier with a gain of 3. When RF = 2RG, the amplifier gain is 3 and oscillation occurs at $f = 1/2\pi RC$. The circuit oscillated at 1.65 kHz rather than 1.59 kHz with the component values shown in Figure 3, but the distortion is noticeable.

Wien Bridge Circuit Schematic with non-linear feedback Fig.

Figure 4 shows a Wien-bridge circuit with non-linear feedback. The lamp resistance, RL, is nominally selected as half the feedback resistance, RF, at the lamp current established by RF and RL. The non-linear relationship between the lamp current and resistance keeps output voltage changes small.

If a voltage source is applied directly to the input of an **ideal** amplifier with feedback, the input current will be:

$$i_{in} = \frac{v_{in} - v_{out}}{Z_f}$$

Where vin is the input voltage, vout is the output voltage, and Zf is the feedback impedance. If the voltage gain of the amplifier is defined as:

$$A_v = \frac{v_{out}}{v_{in}}$$

And the input admittance is defined as:

Input admittance can be rewritten as:

$$Y_i = \frac{1-A_v}{Z_i}$$

 $Z_f = R + \frac{1}{i\omega C}$

 $Y_i =$

For the Wien Bridge, Zf is given by:

$$Y_i = \frac{\left(1 - A_v\right)\left(\omega^2 C^2 R + j\omega C\right)}{1 + \left(\omega C R\right)^2}$$

If Av is greater than 1, the input admittance is a negative resistance in parallel with an inductance.

The inductance is:

$$L_{in} = \frac{\omega^2 C^2 R^2 + 1}{\omega^2 C \left(A_v - 1\right)}$$

If a capacitor with the same value of *C* is placed in parallel with the input, the circuit has a natural resonance at:

$$\omega = \frac{1}{\sqrt{T_{in}C}}$$

 $-\frac{R^2C}{A_v-2}$

Substituting and solving for inductance yields:

If Av is chosen to be 3: $Lin = R^2C$

Substituting this value yields:

$$\omega = \frac{1}{RC} \qquad {\rm Or} \qquad f = \frac{1}{2\pi RC}$$

Similarly, the input resistance at the frequency above is:

 $R_{in} = \frac{-2R}{A_v - 1}$

For Av = 3: Rin = -R

If a resistor is placed in parallel with the amplifier input, it will cancel some of the negative resistance. If the net resistance is negative, amplitude will grow until clipping occurs.Similarly, if the net resistance is positive, oscillation amplitude will decay. If a resistance is added in parallel with exactly the value of R, the net resistance will be infinite and the circuit can sustain stable oscillation at any amplitude allowed by the amplifier.

Increasing the gain makes the net resistance more negative, which increases amplitude. If gain is reduced to exactly 3 when suitable amplitude is reached, stable, low distortion oscillations will result. Amplitude stabilization circuits typically increase gain until suitable output amplitude is reached. As long as R, C, and the amplifier are linear, distortion will be minimal.

Multivibrators

Astable Multivibrator

The two states of circuit are only stable for a limited time and the circuit switches between them with the output alternating between positive and negative saturation values.

Analysis of this circuit starts with the assumption that at time t=0 the output has just switched to state 1, and the transition would have occurred. An op-amp Astable multivibrator is also called as free running oscillator. The basic principle of generation of square wave is to force an op-amp to operate in the saturation region (\pm Vsat). A fraction $\beta =$ R2/(R1+R2) of the output is feedback to the positive input terminal of op-amp. The charge in the capacitor increases & decreases upto a threshold value called $\pm\beta$ Vsat. The charge in the capacitor triggers the op-amp to stay either at +Vsat or –Vsat.

Asymmetrical square wave can also be generated with the help of Zener diodes. Astable multi vibrator do not require a external trigger pulse for its operation & output toggles from one state to another and does not contain a stable state. Astable multi vibrator is mainly used in timing applications & waveforms generators.

Design

OBSERVE OPTIMIZE OUTSPREAD

- 1. The expression of fo is obtained from the charging period t1 & t2 of capacitor as T=2RCln (R1+2R2)/R1
- 2. To simplify the above expression, the value of R1 & R2 should be taken as R2 = 1.16RSuch that fo simplifies to fo =1/2RC.
- 3. Assume the value of R1 and find R2.
- 4. Assume the value of C & Determine R from fo =1/2R C
- 5. Calculate the threshold point from β VSATl = R11VTl/ R1-R2 l/ β VSATl w h e r e β is the feedback ratio.

Monostable Multivibrator using Op-amp:

circuit diagram:

Input Output Waveform:

A multivibrator which has only one stable and the other is quasi stable state is called as Monostable multivibrator or one-short multivibrator. This circuit is useful for generating signal output pulse of adjustable time duration in response to a triggering signal. The width of the output pulse depends only on the external components connected to the op-amp. Usually a negative trigger pulse is given to make the output switch to other state. But, it then return to its stable state after a time interval determining by circuit components. The pulse width T can be given as T = 0.69RC. For Monostable operation the triggering pulse width Tp should be less then T, the pulse width of Monostable multivibrator. This circuit is also called as time delay circuit or gating circuit.

Design:

1. Calculating β from expression

$$\beta = \frac{R1}{R1 + R2}$$

2. The value of R and C from the pulse width time expression.

$$T = RC \ln \frac{(1 + V_D / V_{sor})}{1 - \beta}$$
$$T = RC \ln \frac{(1 + V_D / V_{sor})}{0.5}$$
$$T \equiv 0.69 RC.$$

3. Triggering pulse width T_p must be much smaller than T. Tp < T.

Triangular Wave Generator

A Triangular Wave Generator Using Op amp can be formed by simply connecting an integrator to the square wave generator.

Triangular wave is generated by alternatively charging and discharging a capacitor with a constant current. This is achieved by connecting integrator circuit at the output of square wave generator as shown in the figure above.

Assume that V' is high at +Vsat. This forces a constant current (+Vsat/R3) through C (left to right) to drive Vo negative linearly. When V' is low at —Vsat, it forces a constant current (— Vsat /R3) through C (right to left) to drive Vo positive, linearly. The frequency of the triangular wave is same as that of square wave. This is illustrated in Figure below.

Although the amplitude of the square wave is constant (\pm Vsat), the amplitude of the triangular wave decreases with an increase in its frequency, and vice versa. This is because the reactance of capacitor decreases at high frequencies and increases at low frequencies. In practical circuits, resistance R4 is connected across C to avoid the saturation problem at low frequencies as in the case of practical integrator as shown in the Figure below

To obtain stable triangular wave at the output, it is necessary to have 5R3 C2 > T/2, where T is the period of the square wave input.

The time period of the output of the square wave generator is $T = 2 \times 2.303$ Rf C x log((2R2+R1)/R1) which is the same for triangular wave generator. Frequency of the output f = 1/T

Saw-Tooth Wave Generator

Sawtooth wave generator Figure Schematic of Sawtooth wave generator Sawtooth waveform can be also generated by an asymmetrical astable multivibrator followed by an

integrator as shown in figure .The sawtooth wave generators have wide application in timebase generators and pulse width modulation circuits. The difference between the triangular wave and sawtooth waveform is that the rise time of triangular wave is always equal to its fall of time while in saw tooth generator, rise time may be much higher than its fall of time , vice versa. The triangular wave generator can be converted in to a sawtooth wave generator by injecting a variable dc voltage into the non-inverting terminal of the integrator. In this circuit a potentiometer is used. Now the output of integrator is a triangular wave riding on some dc level that is a function of R4 setting. The duty cycle of square wave will be determined by the polarity and amplitude of dc level. A duty cycle less than 50% will cause output of integrator be a sawtooth. With the wiper at the centre of R4, the output of integrator is square wave. Use of the potentiometer is when the wiper moves towards –VEE, the rise time of the sawtooth become longer than the fall time (see fig. If the wiper moves towards +VCC , the fall time becomes more than the rise time.

Figure shows the Output of sawtooth wave generator when noninverting of integrator is at some negative dc level

ALKULAM, KANYAKUN OBSERVE OPTIMIZE OUTSPREAD