
 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 Variables and Declaration

 Variables are identifiers whose value changes during the execution of the

program. Variables specify the name and type information. The compiler allocates

memory for a particular variable based on the type.

 Variables can be modified using the variable name or address of the variable. The

variable name must be chosen in a meaningful way. The declaration of the

variable must be done before it can be used in the program.

 The general syntax of the variable declaration is given below.

datatype : var1, var2, ….,varn;

where datatype : may be any data type

var1, var2 : variable name separated by a comma

Examples

1. int sum, count;

2. int rollno;

3. float int_rate;

4. double avg, netsal;

5. char char;

Variable declaration with qualifiers

Examples

1. short int number;

2. unsigned int total;

3. long int ser_no;

4. long double volume;

Variable Initialization

 Assigning a relevant value to a variable for the first time in a program is known

as initialization. Sometimes a variable may be initialized on its declaration itself.

Variables can be initialized with a constant value or expression.

Syntax:

datatype variablename = expression;

(or)

datatype variablename = constant;

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Example

1. int c = 10, d = c + 5;

2. float rate = 12.5;

3. char ch = ‘Y’;

4. int count = 0 , sum = 0;

5. float pi = 3.14;

CONSTANT AND VOLATILE VARIABLE

Constant variable

 If we want that the value of a certain variable remain the same or remain

unchanged during the execution of a program, then it can be done only by

declaring the variable as a constant.

 The keyword constant is then added before the declaration. It tells the compiler

that the variable is a constant. Thus, constant declared variables are protected from

modification.

Example

const int a = 20;

where, const is a keyword, a is a variable name and 20 is a constant value. The

compiler protects the value of ‘a’ from modification. The user cannot assign any

value to a; by scanf () statement the value can be replaced.

Volatile variable

 The volatile variables are those variables that are changed at any time by any other

external program or the same program. The syntax is as follows.

Example

volatile int b;

where volatile is a keyword and b is a variable If the value of a variable in the

current program is to be maintained constant and desired not to be changed by any

other external operation, then the declaration of the variable will be as follows;

volatile const b = 20;

 OPERATORS IN C

Operator: An operator is a symbol that specifies an operation to be performed on

operands. Eg: x= a+b; where + is an operator.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Operands: An operand is an entity on which an operation is to be performed. An operand

can be a variable name, a constant, a function call or a macro name.

Eg. x= a+b; where x, a, b are the operands.

Expression: An expression is a sequence of operands and operators that specifies the

computations of a value. An expression is made up of one or more operands. Eg. x= a+b.

 Types of Operators

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Assignment Operators

5. Increment and Decrement Operators

6. Conditional Operators (Ternary Operators)

7. Bitwise Operators

8. Special Operators

 Arithmetic Operators

 Addition, subtraction, multiplication, division and modulo are the arithmetic

operations.

 The arithmetic operators are used for numerical calculations between two

Constants

Operators Explanations Examples

+ Addition 2 + 2 = 4

- Subtraction 3 - 2 = 1

* Multiplication 5 * 4 =20

/ Division 10 / 2 = 5

% Modular Division 11 % 2 = 1

Example:

void main()

{

int a=5, b=4, c;

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

c=a-b;

printf(“%d”, c);

}

 The following table show the division operator on various data types.

Operation Result Example

int/int int 2/5=0

real/int real 5.0/2=2.5

int/real real 5/2.0=2.5

real/real real 5.0/2.0=2.5

 Arithmetic operators can be classified as

o Unary arithmetic – it requires only one operand.

Example: +a, -b

o Binary arithmetic – it requires two operands.

Example: a+b, a-b, a/b, a%b

o Integer arithmetic – it requires both operands to be integer type for

arithmetic operation.

Example:

a=4, b=3

a+b =4+3 =7

a-b =4-3=1

o Floating Point arithmetic – It requires both operands to be float type for

arithmetic operation.

Example:

a=6.5, b=3.5

a+b =6.5+3.5 =10.0

a-b =6.5-3.5=3.0

Program 1.3

#include<stdio.h>

#include<conio.h>

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

void main()

{

int b,c;

int sum, sub, mul;

float div;

clrscr();

printf(“enter the value of b,c:”);

scanf(“%d%d”, &b, &c);

sum=b+c;

sub=b-c;

mul=b*c;

div=b/c;

printf(“\n sum=%d,sub=%d,mul=%d,div=%f”,sum,sub,mul,div);

getch();

}

Output:

Enter the value of b,c: 8 4

sum=12,sub=4,mul=32,div=2

 Relational Operators

 Relational operators are used to compare two or more operands.

 Operands may be variable, constant or expression

Operators Descriptions Example Return Value

> Greater than 5>4 1

< Less than 10<9 0

<= Less than or equal to 10<=10 1

>= Greater than or equal to 11>=5 1

== Equal to 2==3 0

!= Not equal to 3!=3 0

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Syntax
AE1 operator AE2

where, AE- Arithmetic Expression or Variable or Value.

 These operators provide the relationship between two expressions.

 If the condition is true it returns a value 1, otherwise it returns 0.

 These operators are used in decision making process. They are generally used in

conditional or control statement.

 Logical Operators

 Logical Operators are used to combine the result of two or more conditions.

 The logical relationship between the two expressions is checked with logical

operators.

 After checking the condition, it provides logical true (1) or false (0).

Operators Descriptions Example Return Value

&& Logical AND 5>3 &&

5<10

1

|| Logical OR 8>5 || 8<2 1

!= Logical NOT 8!=8 0

 && - This operator is usually used in situation where two or more expressions

must be true.

Syntax:

(exp1) && (exp2)

 || – This is used in situation, where at least one expression is true.

Syntax:

(exp1) || (exp2)

 ! – This operator reverses the value of the expression it operates on. (i.e.,) it makes

a true expression false and false expression true.

Syntax:

!(exp1)

Program 1.4

/* Program using Logical operators */

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

#include<stdio.h>

#include<conio.h>

void main()

{

clrscr();

printf("\n Condition : Return values ");

printf("\n 5<=8 && 4>2: %5d",5<=8 && 4>2);

printf("\n 5>=3 || 6<8: %5d",5>=3 || 6<8);

printf("\n !(7==7): %5d",!(7==7));

getch();

}

Output

Condition : Return values

5<=8 && 4>2 : 1

5>=3 || 6<8 : 1

!(7==7) : 0

 Assignment Operator

 Assignment Operator are used to assign constant or a value of a variable or an

expression to another variable.

Syntax

variable =expression (or) value;

Example

x=10;

x=a+b;

x=y;

Program 1.5

/* Program using Assignment and Short-hand Assignment operators */

#include<stdio.h>

#include<conio.h>

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

void main()

{

int a=20,b=10,c=15,d=25,e=34,x=5;

clrscr();

printf("\n Value of a=%d",a);

printf("\n Value of b=%d",b);

a+=x;

Output

b- =x;

c*=x;

d/=x;

e%=x;

printf("\n Value of a=%d",a);

printf("\n Value of b=%d",b);

printf("\n Value of c=%d",c);

printf("\n Value of d=%d",d);

printf("\n Value of e=%d",e);

getch();

}

Value of a = 20

Value of b = 10

Value of a = 25

Value of b = 5

Value of c = 75

Value of d = 5

Value of e = 4

 Increment and Decrement Operators (Unary Operators)

 The ‘++’ adds one to the variable and ‘--‘subtracts one from the variable. These

operators are called unary operators.

Operator Meaning

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

++X Pre increment

--X Pre decrement

X++ Post increment

X-- Post decrement

Pre-increment operator

 This operator increment the value of a variable first and then perform other

actions.

Program 1.6

#include <stdio.h>

void main()

{

int a,b;

a=10;

b=++a;

printf(“a=%d”,a);

printf(“b=%d”,b);

}

output: a=11 b=11

#include <stdio.h>

void main()

{

int a,b;

a=10;

b=—a;

printf(“a=%d”,a);

printf(“b=%d”,b);

}

Output:

a=9 b=9

Post-increment operator

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 This operator perform other actions first and then increment the value of a

variable.

Program 1.7

#include <stdio.h>

void main()

{

int a,b;

a=10;

b=a++;

printf(“a=%d”,a);

printf(“b=%d”,b);

}

Output:

a=11 b=10

Program 1.8

#include <stdio.h>

void main()

{

int a,b;

a=10;

b=a--;

printf(“a=%d”,a);

printf(“b=%d”,b);

}

Output:

a=9 b=10

 Conditional Operator (or) Ternary Operator

 Conditional operator checks the condition itself and executes the statement

depending on the condition.

Syntax

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

condition?exp1:exp2;

Example

void main()

{

int a=5,b=3,big;

big=a>b?a:b;

printf(“big is…%d”,big);

}

Output

big is…5

 Bitwise Operators

 Bitwise operators are used to manipulate the data at bit level.

 It operates on integers only.

 It may not be applied to float or real.

Operator Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

<< Shift left

>> Shift right

~ One’s complement

Bitwise AND (&):

 This operator is represented as ‘&’ and operates on two operands of integer type.

If both the operands bit is ‘1’ then the result is ‘1’.

Bitwise OR (|):

 Bitwise OR (|) operator gives the value ‘1’ if either of the operands bit is ‘1’

Bitwise Exclusive OR (^)

 Bitwise Exclusive OR(^) gives the value ‘1’ if both operands bit are same.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Program 1.9

/* Program using One's complement operator */

#include<stdio.h>

#include<conio.h>

void main()

{

int a;

clrscr();

printf("\n Enter the value for a : ");

scanf("%d",&a);

printf("\n The One's complement value for a is : %d", ~a);

getch();

}

Output

Enter the value for a: 3

The One's complement value for a is: -4

 The Special Operator

 C language supports some of the special operators given below.

Operator Meaning

, Comma operators

sizeof Size of operators

& and * Pointer operators

. and — > Member selection operators

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

a) Comma operator(,):

 The comma operator is used to separate the statement elements such as variables,

constants or expression etc.,

 This operator is used to link the related expression together.

 Such expression can be evaluated from left to right and the value of right most

expression is the value of combined expression.

Example:

val=(a=3,b=9,c=77,a+c);

Where,

First assigns the value 3 to a

Second assigns the value 9 to b

Third assigns the value 77 to c

Last assigns the value 80.

b) The sizeof() operator:

 The sizeof() is a unary operator that returns the length in bytes of the specified

variable and it is very useful to find the bytes occupied by the specified variable

in memory.

Syntax:

sizeof(var);

Example:

void main()

{

int a;

printf(“size of variable a is…%d”, sizeof(a));

}

Output:

size of variable a is…….2

c) Pointer operator:

 & : This symbol specifies the address of the variable.

 * : This symbol specifies the value of the variable.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

d) Member selection operator:

 . and — >: These symbols are used to access the elements from a structure.

	Variables and Declaration
	datatype : var1, var2, ….,varn;
	Variable declaration with qualifiers Examples
	Variable Initialization
	Syntax:
	Example
	CONSTANT AND VOLATILE VARIABLE
	Example (1)
	const int a = 20;

	Volatile variable
	Example (2)
	volatile int b;

	OPERATORS IN C
	Types of Operators
	Arithmetic Operators
	Example:
	Example: (1)
	Example: (2)
	Program 1.3
	Output:

	Relational Operators
	Syntax

	Logical Operators
	Syntax:
	Syntax: (1)
	Syntax: (2)
	Program 1.4

	Assignment Operator
	Syntax
	Example
	Program 1.5
	Output

	Increment and Decrement Operators (Unary Operators)
	Pre-increment operator
	Program 1.6
	Output:
	Post-increment operator
	Program 1.7
	Output: (1)
	Program 1.8
	Output: (2)

	Conditional Operator (or) Ternary Operator
	Syntax
	Example
	Output

	Bitwise Operators
	Bitwise AND (&):
	Bitwise OR (|):
	Bitwise Exclusive OR (^)
	Program 1.9
	Output

	The Special Operator
	a) Comma operator(,):
	Example:
	b) The sizeof() operator:
	Syntax:
	Example: (1)
	Output:
	c) Pointer operator:
	d) Member selection operator:

