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UNIT IV ALGORITHM DESIGN TECHNIQUES  

Dynamic Programming: Matrix-Chain Multiplication – Elements of Dynamic 

Programming – Longest Common Subsequence- Greedy Algorithms: – Elements of the 

Greedy Strategy- An Activity-Selection Problem - Huffman Coding. 

 

DYNAMIC PROGRAMMING 

Dynamic Programming is the most powerful design technique for solving 

optimization problems. Divide & Conquer algorithm partition the problem into disjoint sub 

problems, solve the  subproblems recursively and then combine their solution to solve the 

original problems.  

Dynamic Programming is used when the subproblems are not independent, e.g. 

when they share  the same subproblems. In this case, divide and conquer may do more 

work than necessary,  because it solves the same sub problem multiple times.  

Dynamic Programming solves each subproblem just once and stores the result in a 

table so that  it can be repeatedly retrieved if needed again.  

Dynamic Programming is a Bottom-up approach- we solve all possible small 

problems and  then combine to obtain solutions for bigger problems.  

Dynamic Programming is a paradigm of algorithm design in which an optimization 

problem is  solved by a combination of achieving sub-problem solutions and appearing to 

the "principle of  optimality".  

Characteristics of Dynamic Programming:  

Dynamic Programming works when a problem has the following features:- 

o Optimal Substructure: If an optimal solution contains optimal sub solutions then 

a  problem exhibits optimal substructure.  

o Overlapping subproblems: When a recursive algorithm would visit the same  

subproblems repeatedly, then a problem has overlapping subproblems.  

If a problem has optimal substructure, then we can recursively define an optimal 

solution. If a  problem has overlapping subproblems, then we can improve on a recursive 

implementation by  computing each subproblem only once.  

If a problem doesn't have optimal substructure, there is no basis for defining a 

recursive  algorithm to find the optimal solutions. If a problem doesn't have overlapping 

subproblems, we  don't have anything to gain by using dynamic programming.  

If the space of subproblems is enough (i.e. polynomial in the size of the input), 

dynamic  programming can be much more efficient than recursion.  
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Elements of Dynamic Programming  

There are basically three elements that characterize a dynamic programming 

algorithm:- 

1. Substructure: Decompose the given problem into smaller subproblems. Express 

the  solution of the original problem in terms of the solution for smaller problems.  

2. Table Structure: After solving the sub-problems, store the results of the sub 

problems in  a table. This is done because subproblem solutions are reused many times, 

and we do not  want to repeatedly solve the same problem over and over again.  

3. Bottom-up Computation: Using tables, combine the solution of smaller 

subproblems to  solve larger subproblems and eventually arrive at a solution to complete 

the problem.  

Bottom-up means:-  

1. Start with the smallest subproblems.  

2. Combining their solutions obtains the solution to sub-problems of increasing size.  

3. Until solving the original problem.  

 

Components of Dynamic programming 

1. Stages: The problem can be divided into several subproblems, which are called 

stages. A  stage is a small portion of a given problem. For example, in the shortest path 

problem,  they were defined by the structure of the graph.  

2. States: Each stage has several states associated with it. The state for the shortest 

path  problem was the node reached.  

3. Decision: At each stage, there can be multiple choices out of which one of the 

best  decisions should be taken. The decision taken at every stage should be optimal; this 

is  called a stage decision.  

4. Optimal policy: It is a rule which determines the decision at each stage; a policy 

is called  an optimal policy if it is globally optimal. This is known as the Bellman principle 

of  optimality.  

5. Given the current state, the optimal choices for each of the remaining states does 

not  depend on the previous states or decisions. In the shortest path problem, it was not  

necessary to know how we got a node, only that we did.  

6. There exists a recursive relationship that identifies the optimal decisions for stage 

j, given  that stage j+1, has already been solved.  

7. The final stage must be solved by itself.  

 

 

Development of Dynamic Programming Algorithm  
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It can be broken into four steps:  

1. Characterize the structure of an optimal solution. 

2. Recursively defined the value of the optimal solution. Like Divide and Conquer, 

divide  the problem into two or more optimal parts recursively. This helps to determine 

what the  solution will look like.  

3. Compute the value of the optimal solution from the bottom up (starting with the 

smallest  subproblems)  

4. Construct the optimal solution for the entire problem from the computed values 

of  smaller subproblems.  

Applications of dynamic programming  

1. 0/1 knapsack problem  

2. Mathematical optimization problem  

3. All pair Shortest path problem  

4. Reliability design problem  

5. Longest common subsequence (LCS)  

6. Flight control and robotics control  

7. Time-sharing: It schedules the job to maximize CPU usage  

 

Development of Dynamic Programming Algorithm  

1. Characterize the structure of an optimal solution.  

2. Define the value of an optimal solution recursively.  

3. Compute the value of an optimal solution in a bottom-up fashion.  

4. Construct the optimal solution from the computed information.  

Dynamic Programming Approach 

Let Ai,j be the result of multiplying matrices i through j. It can be seen that the 

dimension of Ai,j is  pi-1 x pj matrix.  

Dynamic Programming solution involves breaking up the problems into 

subproblems whose  solution can be combined to solve the global problem.  

At the greatest level of parenthesization, we multiply two matrices A1.....n=A1....k 

x Ak+1....n)  

Thus we are left with two questions:  

o How to split the sequence of matrices?  

o How to parenthesize the subsequence A1.....k andAk+1......n?  

One possible answer to the first question for finding the best value of 'k' is to check 

all possible  choices of 'k' and consider the best among them. But that it can be observed 

that checking all  possibilities will lead to an exponential number of total possibilities. It 
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can also be noticed that  there exists only O(n2 ) different sequence of matrices, in this way 

do not reach the exponential  growth.  

Step1: Structure of an optimal parenthesization: Our first step in the dynamic 

paradigm is to  find the optimal substructure and then use it to construct an optimal solution 

to the problem from  an optimal solution to subproblems.  

Let Ai....j where i≤ j denotes the matrix that results from evaluating the product Ai 

Ai+1....Aj.  

If i < j then any parenthesization of the product Ai Ai+1 ......Aj must split that the 

product between  Ak and Ak+1 for some integer k in the range i ≤ k ≤ j. That is for some 

value of k, we first compute  the matrices Ai.....k & Ak+1....j and then multiply them 

together to produce the final product Ai....j. The  cost of computing Ai....k plus the cost of 

computing Ak+1....j plus the cost of multiplying them  together is the cost of 

parenthesization.  

Step 2: A Recursive Solution: Let m [i, j] be the minimum number of scalar 

multiplication  needed to compute the matrixAi....j.  

If i=j the chain consist of just one matrix Ai....i=Ai so no scalar multiplication are 

necessary to  compute the product. Thus m [i, j] = 0 for i= 1, 2, 3....n.  

If i<j we assume that to optimally parenthesize the product we split it between Ak 

and Ak+1 where  i≤ k ≤j. Then m [i,j] equals the minimum cost for computing the 

subproducts Ai....k and Ak+1....j+  cost of multiplying them together. We know Ai has 

dimension pi-1 x pi, so computing the product  Ai....k and Ak+1....jtakes pi-1 pk pj scalar 

multiplication, we obtain 

m [i,j] = m [i, k] + m [k + 1, j] + pi-1 pk pj  

 

 


