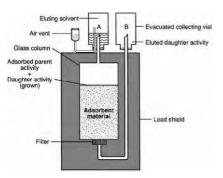
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY BM-3252 MEDICAL PHYSICS


UNIT II

Radionuclide Generators

• Radionuclide generators provide the convenient sources of short-lived radionuclides that are very useful clinically.

The basic requirements for a generator are that a parent radionuclide has a longer half-life than that of the daughter, and the daughter can be easily separated from theparent. In a generator, a long-lived parent radionuclide is allowed to decay to its short-lived daughter radionuclide, and the latter is then chemically separated.

- The importance of radionuclide generators lies in the fact that they are easily transportable and serve as sources of short-lived radionuclides in institutions without cyclotron or reactor facilities.
- A radionuclide generator consists of a glass or plastic column fitted at the bottom with a fretted disk.
- The column is filled with adsorbent material such as ion exchange resin, alumina, and so forth, on which the parent nuclide is adsorbed.
- The parent decays to the daughter until transient or secular equilibrium is established in several half- lives of the daughter.
- After equilibrium, the daughter appears to decay with the same half-life as the parent.
- Because of the differences in chemical properties, the daughter activity is eluted with an appropriate solvent, leaving the parent on the column.
- After elution, the daughter activity builds up again and can be eluted repeatedly.
 - The vial containing the elutant is first inverted onto needle A, and an evacuated vial is inverted on the other needle B.

- The vacuum in the vial on needle B draws the eluant from the vial A through the column and elutes the daughter nuclide, leaving the parent nuclide on the column.
- In some commercial generators, a bottle of eluant is placed inside the housing, and aliquots of eluant are used up in each elution by the evacuated vial.
 - An ideal radionuclide generator should be simple and sturdy for transportation. T
- he generator eluate should be free of the parent nuclide and the adsorbent material.
- Several radionuclide generators are available for ready supply of short-lived radionuclides: ⁹⁹Mo(66hr)–^{99m}Tc(6hr); ¹¹³Sn(117 days)– ^{3m}In(100 min); ⁶⁸Ge(271 days)– ⁶⁸Ga(68min); ⁸²Sr(25.6 days)–⁸²Rb(75sec); ⁸¹Rb(4.6 hr)–^{81m}Kr(13sec).

Technetium Generator

- The technetium generator is constructed with alumina (Al₂O₃) loaded in a plastic or glass column.
- The ⁹⁹Mo activity is adsorbed on alumina in the chemical form MoO_4^{2-} (molybdate) and in various amounts.
- The amount of alumina used is about 5–10 g depending on the ⁹⁹Mo activity. Currently, all generators use fission-produced ⁹⁹Mo.
- The ^{99m}Tc activity is eluted with 0.9% NaCl solution (isotonic saline) and obtained in the chemical form of Na^{99m}TcO₄.
- Considering that only 87% of ⁹⁹Mo decays to ^{99m}Tc, the ^{99m}Tc activity A_{Tc} can be calculated from equation as follows:

$$A_{\rm Tc} = 0.957 (A_{\rm Mo})_0 (e^{-0.0105t} - e^{-0.1155t})$$

• where $(A_{Mo})_0$ is the ⁹⁹Mo activity at t = 0, $\lambda_{Mo} = 0.0105$ hr-1, and $\lambda_{Tc} = 0.1155$ hr-1. The time t has the unit of hour. At transient equilibrium,

$$A_{\rm Tc} = 0.957 (A_{\rm Mo})_0 e^{-0.0105t}$$
$$= 0.957 (A_{\rm Mo})_t$$

• Upon elution with saline, approximately 75% to 85% of the total activity is eluted from the BM 3252 MEDCAL PHYSICS

- Moly generators are typically delivered with approximately 37 to 111 GBq (1 to 3 Ci) of Mo-99, depending on the work load of the department.
- •The activity of the daughter at the time of elution depends on the following:
 - > The activity of the parent
 - The rate of formation of the daughter, which is equal to the rate of decay of the parent
 - > The decay rate of the daughter
 - > The time since the last elution
- > The elution efficiency (typically 80% to 90%).

