... (1)

1.2. PROPERTIES OF EIGEN VALUES AND EIGEN VECTORS

Property: 1(a) The sum of the Eigen values of a matrix is equal to the sum of the elements of the principal (main) diagonal.

(or)

The sum of the Eigen values of a matrix is equal to the trace of the matrix.

1. (b) product of the Eigen values is equal to the determinant of the matrix.

Proof:

Let A be a square matrix of order *n*.

The characteristic equation of A is $|A - \lambda I| = 0$

 $(i.e.)\lambda^n - S_1\lambda^{n-1} + S_2\lambda^{n-2} - \dots + (-1)S_n = 0$

where

 $S_1 =$ Sum of the diagonal elements of A.

 $S_n = determinant of A.$

We know the roots of the characteristic equation are called Eigen values of the given matrix.

Solving (1) we get n roots.

Let the *n* be $\lambda_1, \lambda_2, \dots, \lambda_n$.

i.e., $\lambda_1, \lambda_2, \dots, \lambda_n$ are the Eignvalues of A.

We know already,

 $\lambda^n - (\text{Sum of the roots } \lambda^{n-1} + [\text{sum of the product of the roots taken two at a time}] \lambda^{n-2} - ... + (-1)^n (\text{Product of the roots}) = 0 ... (2)$

Sum of the roots = $S_1 by$ (1)&(2)

 $(i. e.) \lambda_1 + \lambda_2 + \dots + \lambda_n = S_1$

(*i.e.*) $\lambda_1 + \lambda_2 + \dots + \lambda_n = a_{11} + a_{22} + \dots + a_{nn}$

Sum of the Eigen values = Sum of the main diagonal elements

Product of the roots = S_n by (1)&(2)

MA3151-MATRICES AND CALCULUS

 $(i.e.)\lambda_1\lambda_2 \dots \lambda_n = \det \text{ of } A$

Product of the Eigen values = |A|

Property: 2 A square matrix A and its transpose A^T have the same Eigenvalues.

(**or**)

A square matrix A and its transpose A^T have the same characteristic values.

Proof:

Let A be a square matrix of order n.

The characteristic equation of A and A^{T} are

and $|A^{T} - \lambda I| = 0$ (2)

Since, the determinant value is unaltered by the interchange of rows and columns.

We know $|\mathbf{A}| = |\mathbf{A}^{\mathrm{T}}|$

Hence, (1) and (2) are identical.

 \therefore The Eigenvalues of A and A^T are the same.

Property: 3 The characteristic roots of a triangular matrix are just the diagonal elements of the matrix.

(or)

The Eigen values of a triangular matrix are just the diagonal elements of the matrix.

Proof: Let us consider the triangular Characteristic equation of is matrix. $A = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ i.e., $\begin{vmatrix} a_{11} - \lambda & 0 & 0 \\ a_{21} & a_{22} - \lambda & 0 \\ a_{31} & a_{32} & a_{33} - \lambda \end{vmatrix} = 0$ On expansion it gives $(a_{11} - \lambda)(a_{22} - \lambda)(a_{33} - \lambda) = 0$

i.e.,
$$\lambda = a_{11}, a_{22}, a_{33}$$

which are diagonal elements of the matrix A.

Property: 4 If λ is an Eigenvalue of a matrix A, then $\frac{1}{\lambda}$, $(\lambda \neq 0)$ is the Eignvalue of A⁻¹.

(or)

If λ is an Eigenvalue of a matrix A, what can you say about the Eigenvalue of matrix

A⁻¹. Prove your statement.

Proof:

If X be the Eigenvector corresponding to λ ,

then $AX = \lambda X$... (i)

Pre multiplying both sides by A^{-1} , we get

$$A^{-1}AX = A^{-1}\lambda X$$

$$(1) \Rightarrow X = \lambda A^{-1}X$$

$$X = \lambda A^{-1}X$$

$$\div \lambda \Rightarrow \qquad \frac{1}{\lambda}X = A^{-1}X$$

$$(i.e.) \qquad A^{-1}X = \frac{1}{\lambda}X$$

This being of the same form as (i), shows that $\frac{1}{\lambda}$ is an Eigenvalue of the inverse matrix A⁻¹.

Property: 5 If λ is an Eigenvalue of an orthogonal matrix, then $\frac{1}{\lambda}$ is an Eigenvalue.

Proof:

Definition: Orthogonal matrix.
A square matrix A is said to be orthogonal if
$$AA^{T} =$$

 $A^{T}A = I$
i.e., $A^{T} = A^{-1}$

Let A be an orthogonal matrix.

Given λ is an Eignevalue of A.

$$\Rightarrow \frac{1}{\lambda}$$
 is an Eigenvalue of A⁻¹
Since, A^T = A⁻¹

 $\therefore \frac{1}{\lambda}$ is an Eigenvalue of A^T

But, the matrices A and A^T have the same Eigenvalues, since the determinants

 $|A-\lambda I| and \left|A^T-\lambda I\right|$ are the same.

Hence, $\frac{1}{2}$ is also an Eigenvalue of A.

Property: 6 If $\lambda_1, \lambda_2, ..., \lambda_n$. are the Eignvalues of a matrix A, then A^m has the Eigenvalues $\lambda_1^m, \lambda_2^m, ..., \lambda_n^m$ (m being a positive integer)

Proof:

Let A_i be the Eigenvalue of A and X_i the corresponding Eigenvector.

Then $AX_i = \lambda_i X_i$... (1) We have $A^2X_i = A(AX_i)$ $= A(\lambda_i X_i)$

$$= \lambda_i A(X_i)$$

$$= \lambda_i (\lambda_i X_i)$$

 $=\lambda_i^2 X_i$

$$||| 1y A^3 X_i = \lambda_i^3 X$$

In general, $A^m X_i = \lambda_i^m X_i$ (2)

Hence, λ_i^m is an Eigenvalue of A^m .

The corresponding Eigenvector is the same X_i .

Note: If λ is the Eigenvalue of the matrix A then λ^2 is the Eigenvalue of A^2

Property: 7 The Eigen values of a real symmetric matrix are real numbers.

Proof:

Let λ be an Eigenvalue (may be complex) of the real symmetric matrix A. Let the corresponding Eigenvector be X. Let A denote the transpose of A.

We have $AX = \lambda X$

Pre-multiplying this equation by $1 \times n$ matrix $\overline{X'}$, where the bar denoted that all elements of $\overline{X'}$ are the complex conjugate of those of X', we get

$$\overline{X'}AX = \lambda \overline{X'}X \quad \dots (1)$$

Taking the conjugate complex of this we get $X' A\overline{X} = \overline{\lambda}X'\overline{X}$ or

$$X'A\overline{X} = \overline{\lambda}X'\overline{X}$$
 since, $\overline{A} = A$ for A is real.

Taking the transpose on both sides, we get

$$(X'A\overline{X})' = (\overline{\lambda} X'\overline{X})'(i.e.,)\overline{X'} A' X = \overline{\lambda} \overline{X'} X$$

 $(i. e.)\overline{X'} A' X = \overline{\lambda} \overline{X'} X$ since A' = A for A is symmetric.

But, from (1), $\overline{X'} A X = \lambda \overline{X'} X$ Hence $\lambda \overline{X'} X = \overline{\lambda} \overline{X'} X$

Since, $\overline{X'} X$ is an 1 × 1 matrix whose only element is a positive value, $\lambda = \overline{\lambda}$ (*i.e.*) λ is real).

Property: 8 The Eigen vectors corresponding to distinct Eigen values of a real symmetric matrix are orthogonal.

Proof:

For a real symmetric matrix A, the Eigen values are real.

Let X_1, X_2 be Eigenvectors corresponding to two distinct eigen values λ_1 , λ_2 [λ_1 , λ_2 are real]

$$AX_1 = \lambda_1 X_1 \qquad \dots (1)$$
$$AX_2 = \lambda_2 X_2 \qquad \dots (2)$$

Pre multiplying (1) by X_2' , we get

$$X_2'AX_1 = X_2'\lambda_1X_1$$
$$= \lambda_1X_2'X_1$$

Pre-multiplying (2) by X_1' , we get

$$X_{1}'AX_{2} = \lambda_{2}X_{1}'X_{2} \qquad \dots (3)$$

But $(X_{2}'AX_{1})' = (\lambda_{1}X_{2}'X_{1})'$
 $X_{1}'A X_{2} = \lambda_{1}X_{1}'X_{2}$
(*i.e*) $X_{1}'A X_{2} = \lambda_{1}X_{1}'X_{2} \qquad \dots (4) [\because A' = A]$
From (3) and (4)

$$\lambda_1 X_1' X_2 = \lambda_2 X_1' X_2$$

(i.e.,) $(\lambda_1 - \lambda_2) X_1' X_2 = 0$

 $\lambda_1 \neq \lambda_2, X_1' X_2 = 0$

 \therefore X₁, X₂ are orthogonal.

Property: 9 The similar matrices have same Eigen values.

Proof:

Let A, B be two similar matrices.

Then, there exists an non-singular matrix P such that $B = P^{-1} AP$

$$B - \lambda I = P^{-1}AP - \lambda I$$

= P^{-1}AP - P^{-1} \lambda IP
= P^{-1}(A - \lambda I)P
|B - \lambda I| = |P^{-1}| |A - \lambda I| |P|
= |A - \lambda I| |P^{-1}P|
= |A - \lambda I| |I|
= |A - \lambda I|

Therefore, A, B have the same characteristic polynomial and hence characteristic roots.

 \therefore They have same Eigen values.

Property: 10 If a real symmetric matrix of order 2 has equal Eigen values, then the matrix is a scalar matrix.

Proof :

Rule 1 : A real symmetric matrix of order *n* can always be diagonalised.

Rule 2 : If any diagonalized matrix with their diagonal elements are equal, then the matrix is a scalar matrix.

Given A real symmetric matrix 'A' of order 2 has equal Eigen values.

By Rule: 1 A can always be diagonalized, let λ_1 and $\,\lambda_2$ be their Eigenvalues then

we get the diagonlized matrix $= \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix}$ Given $\lambda_1 = \lambda_2$ Therefore, we get $= \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix}$

By Rule: 2 The given matrix is a scalar matrix.

Property: 11 The Eigen vector X of a matrix A is not unique.

Proof:

Let λ be the Eigenvalue of A, then the corresponding Eigenvector X such that $A \, X = \lambda \, X \, .$

Multiply both sides by non-zero K,

$$K(AX) = K(\lambda X)$$

 $\Rightarrow A(KX) = \lambda(KX)$

(i.e.) an Eigenvector is determined by a multiplicative scalar.

(*i.e.*) Eigenvector is not unique.

Property: 12 $\lambda_1, \lambda_2, ..., \lambda_n$ be distinct Eigenvalues of an $n \times n$ matrix, then the corresponding Eigenvectors $X_1, X_2, ..., X_n$ form a linearly independent set. Proof:

Let $\lambda_1, \lambda_2, \dots, \lambda_m (m \le n)$ be the distinct Eigen values of a square matrix A of order *n*.

Let $X_1, X_2, ..., X_m$ be their corresponding Eigenvectors we have to prove $\sum_{i=1}^{m} \alpha_i X_i = 0$ implies each $\alpha_i = 0, i = 1, 2, ..., m$

Multiplying $\sum_{i=1}^{m} \alpha_i X_i = 0$ by $(A - \lambda_1 I)$, we get

$$(\mathbf{A} - \lambda_1 \mathbf{I})\alpha_1 \mathbf{X}_1 = \alpha_1 (A\mathbf{X}_1 - \lambda_1 \mathbf{X}_1) = \alpha_1(0) = 0$$

When $\sum_{i=1}^{m} \alpha_i X_i = 0$ Multiplied by

$$(\mathbf{A} - \lambda_2 \mathbf{I})(\mathbf{A} - \lambda_2 \mathbf{I}) \dots (\mathbf{A} - \lambda_{i-1} \mathbf{I})(\mathbf{A} - \lambda_i \mathbf{I}) (\mathbf{A} - \lambda_{i+1} \mathbf{I}) \dots (\mathbf{A} - \lambda_m \mathbf{I})$$

We get, $\alpha_i(\lambda_i - \lambda_1)(\lambda_i - \lambda_2) \dots (\lambda_i - \lambda_{i-1})(\lambda_i - \lambda_{i+1}) \dots (\lambda_i - \lambda_m) = 0$

Since, λ 's are distinct, $\alpha_i = 0$

Since, *i* is arbitrary, each $\alpha_i = 0, i = 1, 2, ..., m$

 $\sum_{i=1}^{m} \alpha_i X_i = 0$ implies each $\alpha_i = 0, i = 1, 2, ..., m$

Hence, X_1, X_2 , ... X_m are linearly independent.

Property: 13 If two or more Eigen values are equal it may or may not be possible to get linearly

independent Eigenvectors corresponding to the equal roots.

Property: 14 Two Eigenvectors X_1 and X_2 are called orthogonal vectors if $X_1^T X_2 = 0$ Property: 15 If A and B are $n \times n$ matrices and B is a non singular matrix, then A and B^{-1} AB have same eigenvalues.

Proof:

Characteristic polynomial of B^{-1} AB

$$= |B^{-1} AB - \lambda I| = |B^{-1} AB - B^{-1} (\lambda I)B|$$
$$= |B^{-1} (A - \lambda I)B| = |B^{-1}||A - \lambda I||B|$$
$$= |B^{-1}||B||A - \lambda I| = |B^{-1}B||A - \lambda I|$$
$$= Characterisstisc polynomial of A$$

Hence, A and B^{-1} AB have same Eigenvalues.

Example: Find the sum and product of the Eigen values of the

	−2	2	-3]
matrix	2	1	-6
	-1	-2	0

Solution:

Sum of the Eigen values =Sum of the main diagonal elements

$$= (-2) + (1) + (0)$$

= -1
Product of the Eigen values =
$$\begin{vmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{vmatrix}$$

= -2(0 - 12) - 2(0 - 6) - 3(-4 + 1)
= 24 + 12 + 9 = 45

Example: Find the sum and product of the Eigen values of the matrix A=

[1]	2	3]
-1	2	1
l 1	1	1

Solution:

Sum of the Eigen values = Sum of its diagonal elements = 1 + 2 + 1 = 4

Product of Eigen values
$$= |C| = \begin{vmatrix} 1 & 2 & 3 \\ -1 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

 $= 1(2-1) - 2(-1-1) + 3(-1-2)$
 $= 1(1) - 2(-2) + 3(-3)$
 $= 1 + 4 - 9 = -4$

Example: The product of two Eigen values of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ is 16.

Find the third Eigenvalue.

Solution:

Let Eigen values of the matrix A be $\lambda_1, \lambda_2, \lambda_3$.

Given $\lambda_1 \lambda_2 = 16$

We know that, $\lambda_1 \lambda_2 \lambda_3 = |A|$

[Product of the Eigen values is equal to the determinant of the matrix]

$$\begin{split} \therefore \lambda_1 \lambda_2 \lambda_3 &= \begin{vmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{vmatrix} \\ &= 6(9-1) + (-6+2) + 2(2-6) \\ &= 6(8) + 2(-4) + 2(-4) \\ &= 48 - 8 - 8 \\ \Rightarrow \lambda_1 \lambda_2 \lambda_3 &= 32 \\ &\Rightarrow 16 \lambda_3 &= 32 \\ &\Rightarrow \lambda_3 &= \frac{32}{16} = 2 \end{split}$$

Example: Two of the Eigen values of $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ are 2 and 8. Find the third

Eigen value.

Solution:

We know that, Sum of the Eigen values = Sum of its diagonal elements

$$= 6 + 3 + 3 = 12$$

Given $\lambda_1 = 2, \lambda_2 = 8, \lambda_3 = ?$ We get, $\lambda_1 + \lambda_2 + \lambda_3 = 12$ $2 + 8 + \lambda_3 = 12$ $\lambda_3 = 12 - 10$ $\lambda_3 = 2$

 \therefore The third Eigenvalue = 2

Example: If 3 and 15 are the two Eigen values of $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ find |A|,

without expanding the determinant.

Solution:

Given $\lambda_1 = 3, \lambda_2 = 15, \lambda_3 = ?$

We know that, Sum of the Eigen values = Sum of the main diagonal elements

$$\Rightarrow \lambda_1 + \lambda_2 + \lambda_3 = 8 + 7 + 3$$
$$3 + 15 + \lambda_3 = 18$$
$$\Rightarrow \lambda_3 = 0$$

We know that, Product of the Eigen values = |A|

$$\Rightarrow (3)(15)(0) = |A|$$
$$\Rightarrow |A| = (3)(15)(0)$$
$$\Rightarrow |A| = 0$$

Example: If 2, 2, 3 are the Eigen values of $A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$ find the Eigen

values of A^{T} .

Solution:

By Property "A square matrix A and its transpose A^T have the same Eigen values". Hence, Eigen values of A^T are 2, 2, 3

Example: If the Eigen values of the matrix $A = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$ are 2, -2 then find the Eigen values of A^{T} .

Solution:

Eigen values of A = Eigen values of A^{T}

 \therefore Eigen values of A^T are 2, -2.

Example: Two of the Eigen values of $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ are 3 and 6. Find the

Eigen values of A⁻¹.

Solution:

Sum of the Eigen values = Sum of the main diagonal elements

= 3 + 5 + 3 = 11

Let K be the third Eigen value

$$\therefore 3 + 6 + k = 11$$
$$\Rightarrow 9 + k = 12$$
$$\Rightarrow k = 2$$

: The Eigenvalues of A^{-1} are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{6}$

Example: Two Eigen values of the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ are equal to 1 each. Find

the Eigenvalues of A^{-1} .

Solution:

Given A = $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ Solution for the second seco

Let the Eigen values of the matrix A be $\lambda_1, \lambda_2, \lambda_3$

Given condition is $\lambda_2 = \lambda_3 = 1$

We have, Sum of the Eigen values = Sum of the main diagonal elements

$$\Rightarrow \lambda_1 + \lambda_2 + \lambda_3 = 2 + 3 + 2$$
$$\Rightarrow \lambda_1 + 1 + 1 = 7$$
$$\Rightarrow \lambda_1 + 2 = 7$$
$$\Rightarrow \lambda_1 = 5$$

Hence, the Eigen values of A are 1, 1, 5

Eigen values of A^{-1} are $\frac{1}{1}$, $\frac{1}{1}$, $\frac{1}{5}$, i.e., 1, 1, $\frac{1}{5}$

