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1.2. PROPERTIES OF EIGEN VALUES AND EIGEN VECTORS  

Property: 1(a) The sum of the Eigen values of a matrix is equal to the sum of the 

elements of the principal (main) diagonal. 

(or) 

The sum of the Eigen values of a matrix is equal to the trace of the matrix. 

1. (b) product of the Eigen values is equal to the determinant of the matrix. 

Proof:  

           Let A be a square matrix of order 𝑛. 

The characteristic equation of A is |𝐴 – 𝜆𝐼|  = 0 

(𝑖. 𝑒. )𝜆𝑛 − 𝑆1𝜆𝑛−1 + 𝑆2𝜆𝑛−2 − ⋯ + (−1)𝑆𝑛 = 0                                             ... (1)  

where    S1 = Sum of the diagonal elements of A. 

                            . . .  

                            . . .  

                            . . .  

 Sn = determinant of A. 

We know the roots of the characteristic equation are called Eigen values of the given 

matrix. 

Solving (1) we get 𝑛 roots. 

Let the 𝑛 be 𝜆1, 𝜆2, … 𝜆𝑛.  

i.e., 𝜆1, 𝜆2, … 𝜆𝑛. are the Eignvalues of A. 

We know already,  

            λn − (Sum of the roots λn−1 + [sum of the product of the roots taken two at a 

time] λn−2  −   … + (−1)n(Product of the roots) = 0   ... (2) 

Sum of the roots = 𝑆1𝑏𝑦 (1)&(2) 

 (𝑖. 𝑒. ) 𝜆1 + 𝜆2 + ⋯ + 𝜆𝑛 = 𝑆1 

 (𝑖. 𝑒. ) 𝜆1 + 𝜆2 + ⋯ + 𝜆𝑛 = 𝑎11 + 𝑎22 + ⋯ + 𝑎𝑛𝑛 

     

Product of the roots = Snby (1)&(2) 

Sum of the Eigen values = Sum of the main diagonal elements 
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(𝑖. 𝑒. )λ1λ2 … λn = det of A 

 

 

Property: 2 A square matrix A and its transpose 𝐀𝐓 have the same Eigenvalues.  

(or) 

A square matrix A and its transpose 𝐀𝐓 have the same characteristic values. 

Proof:  

         Let A be a square matrix of order 𝑛.  

The characteristic equation of A and  AT are 

|A − λI| = 0                  … … . (1) 

and  |AT − λI| = 0                … … . (2) 

 Since, the determinant value is unaltered by the interchange of rows and columns. 

We know |A| = |AT| 

Hence, (1) and (2) are identical. 

∴ The Eigenvalues of A and AT are the same.  

Property: 3 The characteristic roots of a triangular matrix are just the diagonal 

elements of the matrix.  

(or) 

The Eigen values of a triangular matrix are just the diagonal elements of the matrix. 

  

Proof: Let us consider the triangular    Characteristic equation of is  

matrix.      |A − λI| = 0 

A = [
𝑎11 0 0
𝑎21 𝑎22 0
𝑎31 𝑎32 𝑎33

]                              i.e.,       |

𝑎11 − 𝜆 0 0
𝑎21 𝑎22 − 𝜆 0
𝑎31 𝑎32 𝑎33 − 𝜆

| = 0 

On expansion it gives (𝑎11 − 𝜆)(𝑎22 − 𝜆)(𝑎33 − 𝜆) = 0 

i.e., 𝜆 = 𝑎11, 𝑎22, 𝑎33 

which are diagonal elements of the matrix A.  

Product of the Eigen values = |A| 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

MA3151-MATRICES AND CALCULUS 

Property: 4 If 𝝀 is an Eigenvalue of a matrix A, then 
𝟏

𝝀
, (𝝀 ≠ 𝟎) is the Eignvalue of 

𝐀−𝟏. 

(or) 

If 𝝀 is an Eigenvalue of a matrix A, what can you say about the Eigenvalue of matrix 

𝐀−𝟏. Prove your statement.  

Proof:  

           If X be the Eigenvector corresponding to 𝜆, 

then 𝐴𝑋 = 𝜆𝑋    ... (i) 

Pre multiplying both sides by A−1, we get 

  A−1AX = A−1λX 

  (1) ⇒ X = λA−1X 

           X = λA−1X 

                ÷ λ ⇒           
1

λ
X = A−1X 

                (𝑖. 𝑒. )         A−1X =
1

λ
X 

This being of the same form as (i), shows that 
1

𝜆
 is an Eigenvalue of the inverse matrix A−1. 

Property: 5 If 𝝀 is an Eigenvalue of an orthogonal matrix, then 
𝟏

𝝀
 is an Eigenvalue. 

Proof:  

Definition: Orthogonal matrix. 

A square matrix A is said to be orthogonal if AAT =

ATA = I 

i.e., AT = A−1 

Let A be an orthogonal matrix. 

Given 𝜆 is an Eignevalue of A.  

 ⇒
1

𝜆
is an Eigenvalue of A−1 

Since, AT = A−1 
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 ∴
1

𝜆
  is an Eigenvalue of AT 

 But, the matrices A and AT have the same Eigenvalues, since the determinants 

 |A − λI|and |AT − λI| are the same. 

Hence, 
1

𝜆
 is also an Eigenvalue of A.  

Property: 6 If 𝝀𝟏, 𝝀𝟐, … 𝝀𝒏. are the Eignvalues of a matrix A, then 𝐀𝐦 has the 

Eigenvalues 𝛌𝟏
𝐦, 𝛌𝟐

𝐦, … . , 𝛌𝐧
𝐦 (𝐦 𝐛𝐞𝐢𝐧𝐠 𝐚 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞 𝐢𝐧𝐭𝐞𝐠𝐞𝐫) 

Proof:  

         Let 𝐴𝑖 be the Eigenvalue of A and 𝑋𝑖 the corresponding Eigenvector. 

 Then 𝐴𝑋𝑖 = 𝜆𝑖𝑋𝑖    … (1) 

We have A2Xi = A(AXi) 

= A(λiXi) 

= λiA(Xi) 

= λi(λiXi) 

= λi
2Xi 

|∣| 1y A3Xi = λi
3Xi 

In general, AmXi = λi
mXi          … . (2) 

Hence, 𝜆𝑖
𝑚 is an Eigenvalue of Am. 

The corresponding Eigenvector is the same 𝑋𝑖. 

Note: If λ is the Eigenvalue of the matrix A then λ2 is the Eigenvalue of A2 

Property: 7 The Eigen values of a real symmetric matrix are real numbers.  

Proof:  

           Let λ be an Eigenvalue (may be complex) of the real symmetric matrix A. Let the 

corresponding Eigenvector be X. Let A denote the transpose of A.  

We have AX = λX 

Pre-multiplying this equation by 1 × 𝑛 matrix 𝑋′̅, where the bar denoted that all 

elements of 𝑋′̅ are the complex conjugate of those of 𝑋′, we get  

X′AX = λX′X      … . (1) 
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Taking the conjugate complex of this we get X′ AX = λX′X  or  

X′A X = λ X′ X  since, A = A for A is real.  

Taking the transpose on both sides, we get 

(X′AX)′ = (λ X′ X)′(𝑖. 𝑒. , )X′ A′ X = λ X′ 𝑋  

(𝑖. 𝑒. )X′ A′ X = λ X′ 𝑋 since A′ = A for A is symmetric. 

But, from (1), X′ A X = λ X′ 𝑋  Hence λ X′ 𝑋 = λ X′ 𝑋  

Since, X′ X is an 1 × 1 matrix whose only element is a positive value, λ = λ  (𝑖. 𝑒. ) 𝜆 is 

real). 

Property: 8 The Eigen vectors corresponding to distinct Eigen values of a real 

symmetric matrix are orthogonal.  

Proof:  

          For a real symmetric matrix A, the Eigen values are real. 

Let 𝑋1, 𝑋2 be Eigenvectors corresponding to two distinct eigen values 𝜆1 , 𝜆2 

[𝜆1 , 𝜆2  are real] 

AX1 = λ1X1                     … . (1) 

AX2 = λ2X2                     … . (2) 

Pre multiplying (1) by X2′, we get  

X2′AX1 = X2′λ1X1 

  = λ1X2′X1 

Pre-multiplying (2) by X1′, we get  

X1′AX2 = λ2X1′X2             … . (3) 

But(X2′AX1)′ = (λ1X2′X1)′ 

          X1′A X2 = λ1X1′X2 

      (𝑖. 𝑒)      X1′A X2 = λ1X1′X2    ..... (4)   [∵ A′ = A] 

From (3) and (4) 

λ1X1
 ′ X2 = λ2X1′ X2 

(i.e.,)(λ1 − λ2)X1
 ′ X2 = O 
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λ1 ≠ λ2, X1
 ′ X2 = O  

 ∴ X1 , X2 are orthogonal.  

Property: 9 The similar matrices have same Eigen values.  

Proof:  

         Let A, B be two similar matrices. 

Then, there exists an non-singular matrix P such that B = P−1 AP 

B − λI = P−1AP − λI 

= P−1AP − P−1 λIP 

= P−1(A − λI)P 

|B − λI| = |P−1| |A − λI| |P| 

= |A − λI| |P−1P| 

= |A − λI| |I| 

= |A − λI| 

Therefore, A, B have the same characteristic polynomial and hence characteristic roots.  

∴ They have same Eigen values.  

Property: 10 If a real symmetric matrix of order 2 has equal Eigen values, then the 

matrix is a scalar matrix.  

Proof :  

Rule 1 : A real symmetric matrix of order 𝑛 can always be diagonalised. 

Rule 2 : If any diagonalized matrix with their diagonal elements are equal, then the matrix 

is a scalar matrix.  

Given  A real symmetric matrix ‘A’ of order 2 has equal Eigen values.  

By Rule: 1 A can always be diagonalized, let λ1 and  λ2 be their Eigenvalues then  

we get the diagonlized matrix   = [
λ1 0
0 λ2

] 

  Givenλ1 = λ2 

Therefore, we get = [
λ1 0
0 λ2

] 

 By Rule: 2 The given matrix is a scalar matrix.  
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Property: 11 The Eigen vector X of a matrix A is not unique. 

Proof :  

          Let λ be the Eigenvalue of A, then the corresponding Eigenvector X such that  

A X = λ X . 

Multiply both sides by non-zero K, 

     K (AX) = K (λX) 

⇒ A (KX) = λ (KX) 

(𝑖. 𝑒. )an Eigenvector is determined by a multiplicative scalar. 

(𝑖. 𝑒. ) Eigenvector is not unique. 

Property: 12  𝝀𝟏, 𝝀𝟐, … 𝝀𝒏 be distinct Eigenvalues of an 𝒏 × 𝒏 matrix, then the 

corresponding Eigenvectors 𝐗𝟏, 𝐗𝟐 , … 𝐗𝐧 form a linearly independent set. 

Proof:  

         Let 𝜆1, 𝜆2, … 𝜆𝑚(𝑚 ≤ 𝑛) be the distinct Eigen values of a square matrix A of order 

𝑛.  

Let X1, X2 , … Xm be their corresponding Eigenvectors we have to prove 

∑ 𝛼𝑖
𝑚
𝑖=1 Xi = 0 implies each 𝛼𝑖 = 0, 𝑖 = 1,2, … , 𝑚 

  Multiplying ∑ 𝛼𝑖
𝑚
𝑖=1 Xi = 0 by (A − 𝜆1I), we get 

(A − 𝜆1I)𝛼1X1 = 𝛼1(𝐴X1 − 𝜆1X1 ) = 𝛼1(0) = 0 

 When ∑ 𝛼𝑖
𝑚
𝑖=1 Xi = 0 Multiplied by 

                    (A − 𝜆2I)(A − 𝜆2I) … (A − 𝜆𝑖−1I)(A − 𝜆𝑖I) (A − 𝜆𝑖+1I) … (A − 𝜆𝑚I)  

We get, 𝛼𝑖(𝜆𝑖 − 𝜆1)(𝜆𝑖 − 𝜆2) … (𝜆𝑖 − 𝜆𝑖−1)(𝜆𝑖 − 𝜆𝑖+1) … (𝜆𝑖 − 𝜆𝑚) = 0  

Since, λ’s are distinct, 𝛼𝑖 = 0 

Since, 𝑖 is arbitrary, each 𝛼𝑖 = 0, 𝑖 = 1, 2, … , 𝑚 

 ∑ 𝛼𝑖
𝑚
𝑖=1 Xi = 0 implies each 𝛼𝑖 = 0, 𝑖 = 1,2, … , 𝑚 

Hence, X1, X2 , … Xm are linearly independent. 

Property: 13 If two or more Eigen values are equal it may or may not be possible to 

get linearly  

                       independent Eigenvectors corresponding to the equal roots.  
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Property: 14 Two Eigenvectors 𝐗𝟏and 𝐗𝟐 are called orthogonal vectors if 𝑿𝟏
 𝑻 𝐗𝟐 = 𝟎 

Property: 15 If A and B are  𝒏 × 𝒏 matrices and B is a non singular matrix, then A 

and 𝑩−𝟏 𝐀𝐁 have same eigenvalues.  

Proof:  

          Characteristic polynomial of 𝐵−1 AB 

                         = |B−1 AB − λI| = |B−1 AB − B−1(λI)B| 

 = |B−1 (A − λI)B| = |B−1||A − λI||B| 

             = |B−1| |B| |A − λI| = |B−1B||A − λI|  

             = Characterisstisc polynomial of A 

Hence, A and B−1 AB have same Eigenvalues.  

Example:  Find the sum and product of the Eigen values of the 

matrix[
−𝟐 𝟐 −𝟑
𝟐 𝟏 −𝟔

−𝟏 −𝟐 𝟎
]  

Solution:  

             Sum of the Eigen values =Sum of the main diagonal elements  

                           = (−2) + (1) + (0) 

                             = −1 

Product of the Eigen values = |
−2 2 −3
2 1 −6

−1 −2 0
| 

 = −2(0 − 12) − 2(0 − 6) − 3(−4 + 1) 

= 24 + 12 + 9 = 45 

Example:  Find the sum and product of the Eigen values of the matrix  A=

[
𝟏 𝟐 𝟑

−𝟏 𝟐 𝟏
𝟏 𝟏 𝟏

] 

Solution: 

          Sum of the Eigen values = Sum of its diagonal elements = 1 + 2 + 1 = 4 
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                Product of Eigen values  = |C| = |
1 2 3

−1 2 1
1 1 1

| 

            = 1(2 − 1) − 2(−1 − 1) + 3(−1 − 2) 

                                                             = 1(1) − 2(−2) + 3(−3) 

                                                             = 1 + 4 − 9 = −4 

Example:  The product of two Eigen values of the matrix 𝑨 = [
𝟔 −𝟐 𝟐

−𝟐 𝟑 −𝟏
𝟐 −𝟏 𝟑

]is 16. 

Find the third Eigenvalue.  

Solution:   

          Let Eigen values of the matrix A be 𝜆1, 𝜆2, 𝜆3. 

Given  𝜆1𝜆2  = 16                                          

We know that, 𝜆1𝜆2𝜆3 = |A| 

[Product of the Eigen values is equal to the determinant of the matrix] 

           ∴ 𝜆1𝜆2𝜆3 = |
   6 −2    2
−2    3 −1
   2 −1   3

| 

                  = 6(9 − 1) + (−6 + 2) + 2(2 − 6) 

                  = 6(8) + 2(−4) + 2(−4) 

                  = 48 − 8 − 8 

⇒ 𝜆1𝜆2𝜆3 = 32 

             ⇒ 16 𝜆3 = 32 

             ⇒  𝜆3 =
32

16
= 2 

Example:  Two of the Eigen values of [
   𝟔 −𝟐    𝟐
−𝟐    𝟑 −𝟏
   𝟐 −𝟏    𝟑

]are 2 and 8. Find the third 

Eigen value.  

 Solution:  

              We know that, Sum of the Eigen values = Sum of its diagonal elements 

                                                                             = 6 + 3 + 3 = 12 
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Given  𝜆1 = 2, 𝜆2  = 8, 𝜆3 = ? 

We get, 𝜆1 + 𝜆2 + 𝜆3 = 12 

2 + 8 + 𝜆3 = 12 

  𝜆3 = 12 − 10 

   𝜆3 = 2 

∴ The third Eigenvalue = 2 

Example:  If 3 and 15 are the two Eigen values of 𝑨 = [
    𝟖 −𝟔    𝟐
−𝟔     𝟕 −𝟒
  𝟐 −𝟒    𝟑

] 𝐟𝐢𝐧𝐝 |𝐀|, 

without expanding the determinant.  

 Solution:  

            Given  𝜆1 = 3, 𝜆2  = 15, 𝜆3 = ? 

We know that, Sum of the Eigen values  = Sum of the main diagonal elements 

                                         ⇒ 𝜆1 + 𝜆2 + 𝜆3 = 8 + 7 + 3 

                                                3 + 15 + 𝜆3 = 18 

                                                  ⇒ 𝜆3 = 0 

We know that, Product of the Eigen values = |A| 

                                              ⇒ (3)(15)(0) = |A| 

                                             ⇒ |A| = (3)(15)(0) 

                                 ⇒ |A| = 0 

Example:  If 2, 2, 3 are the Eigen values of 𝑨 = [
    𝟑 𝟏𝟎    𝟓
−𝟐 −𝟑 −𝟒
  𝟑 𝟓    𝟕

]     find the Eigen 

values of    𝐀𝐓. 

Solution:  

             By Property “A square matrix A and its transpose AT have the same Eigen values”.  

Hence, Eigen values of AT are 2, 2, 3  

Example:  If the Eigen values of the matrix 𝑨 = [
𝟏    𝟏
𝟑 −𝟏

] are  𝟐, −𝟐 then find the 

Eigen values of 𝐀𝐓.  
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 Solution:  

            Eigen values of 𝐴 = Eigen values 𝑜𝑓 AT 

∴ Eigen values 𝑜𝑓 AT are 2, −2.  

Example:  Two of the Eigen values of 𝑨 = [
𝟑 −𝟏 𝟏

−𝟏 𝟓 −𝟏
𝟏 −𝟏 𝟑

] are 3 and 6. Find the 

Eigen values of 𝐀−𝟏.  

 Solution:  

Sum of the Eigen values = Sum of the main diagonal elements 

                            = 3 + 5 + 3 = 11 

Let K be the third Eigen value 

∴ 3 + 6 + 𝑘 = 11 

⇒ 9 + 𝑘 = 11 

        ⇒ 𝑘 = 2 

∴ The Eigenvalues of A−1 are 
1

2
 ,

1

3
 ,

1

6
   

Example: Two Eigen values of the matrix 𝐀 = [
𝟐 𝟐 𝟏
𝟏 𝟑 𝟏
𝟏 𝟐 𝟐

] are equal to 1 each. Find 

the Eigenvalues of 𝐀−𝟏.  

Solution:  

        Given A = [
2 2 1
1 3 1
1 2 2

] 

Let the Eigen values of the matrix A be 𝜆1, 𝜆2, 𝜆3 

Given condition is 𝜆2 = 𝜆3 = 1 

We have, Sum of the Eigen values = Sum of the main diagonal elements  

                                     ⇒ 𝜆1 + 𝜆2 + 𝜆3 = 2 + 3 + 2 

                                     ⇒ 𝜆1 + 1 + 1 = 7 

                                     ⇒ 𝜆1 + 2 = 7 

                                    ⇒ 𝜆1 = 5 
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Hence, the Eigen values of A are 1, 1, 5 

Eigen values of A−1 are 
1

1
 ,

1

1
 ,

1

5
 ,    i. e. ,    1, 1,

1

5
    


